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Extreme events: blending principal components analysis 

with independent components analysis 

 Principal Components Analysis (PCA) and Independent Components 

Analysis (ICA) 

 Their main characteristics and differences 

 Extreme events and fat tails 

 Analysing what drives markets 

 Identifying similarities between PCA and ICA 

 Blending together PCA and ICA for refined risk model and portfolio 

construction purposes 
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PCA vs. ICA – main characteristics and differences 

 Both are examples of ‘blind source separation’, aiming to identify ‘signals’ 

(i.e. sources / factors) that explain (observed) market behaviour 

 Principal Components Analysis (PCA) 

 Seeks to identify the largest contributors to variance, i.e. magnitude of impact 

 ‘Signals’ maximise sum of variances of returns of each security within universe 

 Independent Components Analysis (ICA) 

 Seeks to identify contributors to market behaviour that are meaningful 

 ‘Signals’ maximise independence, non-Normality and/or complexity 
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Relevance for risk and portfolio construction modelling 

 Ideally risk and portfolio construction models should incorporate both 

magnitude and meaning 

 Magnitude, because size of (adverse) event is its most important 

characteristic for risk management purposes, irrespective of its source 

 Meaning (and hence explanatory capability), because 

 Humans are naturally curious and seek meaning (and purpose!) 

 “The only ‘bad’ mistakes are the ones we don’t learn from” 

 Particularly for portfolio construction – as long as we are around next time! 

 Extreme events probably have the most of both! 
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5 Visualising extreme events, i.e. fat tails – single return series 

 There are various ways of visualising fat tails in a single return distribution. 

Easiest to see in format (c) below 

 By ‘fat tail’ we mean probability of extreme-sized outcomes (returns / movements 

/ events) seems to be higher than if coming from a (log) Normal distribution 

(a) Example Probability Density Function
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(b) Example cumulative probability 

distribution plot

0

0.2

0.4

0.6

0.8

1

x, e.g. (log) return

C
u

m
u

la
ti

v
e

 

D
is

tr
ib

u
ti

o
n

 

F
u

n
c

ti
o

n

Normal
distribution

Example fat-tailed
distribution

(c) Example quantile-quantile plot
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6 Fat-tailed behaviour depends partly on timescale 

 Some instrument types intrinsically skewed (e.g. high-grade bonds, options) 

 Others (e.g. equities) still exhibit fat-tails, timescale dependent 

 E.g. Monthly, weekly and daily returns for major equity market indices (end June 

1994 to end Dec 2007) 

(1) Monthly Returns
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(2) Weekly Returns
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(3) Daily Returns
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7 Fat tails and portfolio construction 

 Clients want good performance at an acceptable level of risk, i.e. efficient 

use of the available risk budget: 

 Choose the right level of risk to run (i.e. the risk budget), and 

 Construct a portfolio (i.e. choose between assets) to deliver versus this budget 

 If all opportunities (and combinations) ‘equally’ (jointly) fat-tailed 

 Same answers as traditional mean-variance optimisation, but with risk budget 

adjusted accordingly 

 If different combinations exhibit differential fat-tailed behaviour 

 Portfolio construction ought in principle to change, if you can reliably estimate 

these differentials (and if investors don’t have quadratic utility functions) 
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8 Fat tails – in joint return series 

 We can subdivide joint ‘fat-tailed-ness’ into two parts: 

 How fat-tailed each series is in isolation, i.e. each marginal distribution, and 

 How fat-tailed is their co-movement, i.e. their (joint) copula function 

 Sklar’s theorem: 

 Suppose that X1, X2, ..., XN are random variables 

 With marginal distribution functions, i.e. individual cumulative probability 

distribution functions, say, F1(x1), F2(x2), ..., FN(xN) 

 And a joint distribution function F(x1, x2, ..., xN) 

 Then F can always be characterised by the N marginal distributions and an N-

dimensional copula, C, i.e. a function that maps a vector of N numbers each 

between 0 and 1 onto some value in the range 0 to 1, using: 

 )(...)()(),...,,(),...,,( 2112121 NNN xFxFxFxxxCxxxF 
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9 Visualisation of joint fat-tailed behaviour 

 Visualisation also tricky, easiest seems to be differences in copula gradients 

 Effectively the same as fractile-fractile, i.e. quantile-quantile box, plots 
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Quantile-quantile box plots 10 

 E.g. consider two return series in tandem, 
bucket each into quantile boxes and plot the 
number of times each quantile box pairing 
occurs 

 Maybe include all possible unit +/- stances to 
make four corners of the plot symmetrical? 

 Aggregate plots for all possible sector pairs? 

 E.g. chart opposite based on monthly (log) 
sector relative price movements for 23 MSCI 
AC-World sectors with complete series 
between (30/05/96 and 28/02/09) 

 Strong evidence that correlations “tend to 
unity” in stressed times? 

 Or merely that we are mixing different 
distributions together? 

Source: Nematrian, Thomson Datastream 
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Principal components analysis (PCA) 

 A common way of deriving factors that describe observed market behaviour 

 Typically introduced via eigenvalues and (normalised) eigenvectors of the return 

covariance matrix, V 

 i.e. solutions to Vx = x; the  are the eigenvalues, the x are the eigenvectors 

 Any instrument’s behaviour then expressible as a linear combination of 

‘signals’ associated with these eigenvectors 

 i.e. r(j, t) = a(j,1) .S1(t) + a(j,2).S2(t) + ... + a(j,n).Sn(t)   for instrument j 

 Eigenvectors are orthogonal, deemed to be ‘different ’ drivers of behaviour 

 Usually limit merely to ‘significant’ factors, and add back idiosyncratic risk 

11 
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Applying PCA to sector relatives 12 
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Principal components – explanation or noise? 

 PCA focuses just on magnitude of contribution to variance 

 The trace of the covariance matrix (i.e. the sum of the variances of each security 

in the universe) equals the sum of its eigenvalues 

 So even the most important PCA components might just be (larger 

magnitude) random noise 

 Usually when asked to explain how something works, we expect the 

answers (i.e. ‘drivers’) to be ‘causative’ or ‘informative’, like extracting radio 

signals from background noise 

 Is it possible instead to focus on meaningfulness? 

13 
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Independent components analysis 

 This is the basic idea behind independent components analysis 

 Again assume output (i.e. here, observed returns) come from a linear 

combination of input signals 

 But now focus on meaningfulness, e.g. ‘Independence’, ‘non-Normality’ or 

‘complexity’ 

 If source signals have some property X and signal mixtures do not (or 

have less of it) then given a set of signal mixtures we should attempt to 

extract signals with as much X as possible, since these extracted signals 

are then likely to correspond as closely as possible to the original source 

signals 

14 
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E.g. Non-Normality and Projection pursuit 

 Suppose we think that ‘behaviour’ that is highly non-Normal is likely to be 

‘interesting’ (i.e. worth exploring further) and probably ‘meaningful’ 

 Suppose we also associate non-Normality with (excess) kurtosis 

 Conveniently: 

 All linear combinations of independent distributions have a kurtosis less than or 

equal to the largest kurtosis of any of the individual distributions 

 Kurtosis is scale independent (i.e. k.x has the same kurtosis as x if k is a scalar) 

15 
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Projection pursuit algorithm (1) 

 If y are observed output results and x are supposed input signals then 

 We have assumed that y = Wx for some W, the mixing matrix 

 Hence x = Ay, for some A, the unmixing matrix, where A = W -1 

16 
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Projection pursuit algorithm (2) 

 Algorithm: 

 Choose an importance criterion, e.g. kurtosis 

 Choose from set of all possible unmixing coefficients the one that provides the 

deemed input signal (of unit strength) that maximises the importance criterion 

 Deem this to be an actual input signal, moreover the most important one 

 Take away any contribution from this signal to the output results 

 Repeat, until no further signals extracted by the algorithm appear significant / 

meaningful 

17 
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Independent components analysis (ICA) 

 Can be thought of as an ‘all-at-once version’ of projection pursuit 

 Involves working out the maximum likelihood estimator of the entire 

unmixing matrix, assuming the signals are independent 

 Needs an a priori distributional form to assume for the individual signals 

 Often choose one with very high kurtosis, e.g.  

 Or ‘infomax’ ICA 

 Identify how ‘surprising’ (and therefore meaningful) is the observed data given 

some a priori multivariate distribution in which each individual series is 

independent, measured using, say, relative entropy (aka Kullback-Leibler 

divergence) 

18 
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Blending together PCA and ICA 

 PCA offers magnitude, ICA offers meaningfulness 

 Ideally we would like the best of both 

 But one focuses on variance, the other on (e.g.) kurtosis? 

 Fortunately, it is possible to blend the two, e.g. by 

 Recasting PCA along the lines of projection pursuit (with an importance criterion 

involving maximising contribution to variance), and then 

 Choosing a different importance criterion that blends together variance and 

(e.g.) kurtosis 

19 

http://www.nematrian.com/


Nematrian malcolm.kemp@nematrian.com 

Identifying Principal Components one at a time 

 Most PCA algorithms calculate all eigenvectors/eigenvalues simultaneously 

 However, suppose V is an n x n covariance matrix with (sorted) 

eigenvalues 1, 2, ..., n (largest is 1) and corresponding (normalised) 

eigenvectors q1, q2, ..., qn. 

 Suppose our importance criterion involves f(a) = aTVa, and |a|=1 

 Then a can be expressed as a = a1q1 + ... + anqn with a1
2 + ... + an

2 = 1 

 And f(a) = a1
21  + ... + an

2n so f(a) is maximised when a = q1 

 And eigenvectors are orthogonal, so removing one from output signals 

leaves remainder still to be extracted 

20 
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Blending PCA with ICA 

 Use a blended importance criterion, e.g. 

 Maximise f(a) =  (1+cK), across possible a with |a|=1, where: 

 K is the kurtosis of a, 2 = aTVa 

 c is some constant that represents a trade-off between concentrating on 

maximising variance and concentrating on maximising kurtosis (if c = 0 then 

equivalent to PCA, if c is large then will approximate ICA) 

 Can be re-expressed to be akin to the Cornish-Fisher 4th moment 

asymptotic expansion for estimating quantiles of a Non-Normal distribution 

(with zero skew) 

 

 E.g. 99.5%ile, x = N -1(0.995) = - 2.576 and c = 0.39 

21 
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Extreme events appear to be very important! 22 

 Sizes of ‘1 in 200’ events potentially underestimated by PCA by 4- or 5-fold 

 If portfolio built on the basis of ‘meaning’ (e.g. if actively managed) 

PCA Blended PCA/ICA c.f. ICA 

Component StdDev Kurt Criterion StdDev Kurt Criterion StdDev Kurt 

1 10.6% 3.1 10.6% 8.3% 14.9 56.6% 4.5% 24.2 

2 6.5% 2.1 6.5% 4.9% 24.9 52.7% 4.2% 23.5 

3 5.6% 1.7 5.6% 5.0% 22.1 48.0% 4.5% 18.1 

4 4.8% 1.4 4.8% 4.5% 14.7 30.1% 6.9% 16.2 

5 4.2% 0.4 4.2% 4.3% 15.0 29.7% 4.2% 15.0 

6 3.7% 1.1 3.7% 4.8% 9.2 22.1% 4.2% 13.7 

Av (top 6) 5.9% 1.6 5.9% 5.3% 16.8 39.9% 4.7% 18.5 

Av (all 23) 3.2% 1.2 3.2% 3.6% 8.2 17.5% 3.7% 9.1 
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Limitations 

 Both PCA and ICA assume that observations are (time stationary) linear 

combination mixtures 

 i.e. a = a1q1 + ... + anqn  and y = Wx  

 But not all mixtures are of this form 

 Consider distributional mixtures, y drawn from distribution D1 with 

probability p1, from distribution D2 with probability p2 etc. 

 These typically result in fat-tailed behaviour 

 Very important special case is modelling a time-varying world 

 c.f. GARCH, regime shifts etc. 

 Also, Cornish-Fisher (and hence kurtosis) may misestimate sizes of fat tails 

23 
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Summary 

 PCA concentrates on magnitude (maximise aggregate contribution to 

variance) 

 ICA concentrates on meaningfulness (and thus comes in more flavours, but 

often seeks to maximise kurtosis) 

 In either case, most important component can be extracted by projection 

pursuit maximising a particular importance criterion 

 So we can blend the two together, using a blended importance criterion 

 But further refinements needed to cater for time-varying volatility and other 

behaviour linked to distributional mixtures 

 Such mixtures are important sources of fat-tailed behaviour in practice 

24 
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25 Appendix A: Time-varying volatility in single return series 

 Fat tails involve deviation from Normality 

 Hence at least some of the higher cumulants (moments), aka semi-invariants, of the 
distribution, e.g. skew and (excess) kurtosis, must deviate from zero (Normality) 
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 Use of these (and possibly other higher cumulants) is most common way of analysing 
and coping with fat tails, but it is not necessarily the best approach  
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26 Interpretation via Cornish-Fisher asymptotic expansion 

 Cornish-Fisher (4th moment version) 
estimates distributional form from merely 
the first 4 moments, i.e. mean, standard 
deviation, skew and (excess) kurtosis 

 Regularly appears in risk management 
academic literature 

 For standardised returns (zero mean, unit 
standard deviation), quantile-quantile plot 
estimated via a cubic equation: 
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27 Flaws in Cornish Fisher (and hence in skew/kurtosis) 

 Doesn’t model index return distributions 

particularly well 

 Particularly parts risk managers might 

be most interested in, i.e. downside tails 

 Computation gives less weight to tail 

observations (most observations are in 

middle of the distribution) 

 Lacks a desirable stability criterion 

 Applying CF twice can lead to a more 

extreme distribution 

Source: Threadneedle, FTSE, Thomson Datastream 
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28 A better approach? 

 Fit quantile-quantile plot directly? 

 E.g. with a cubic curve 

 Calculation is more complex 

 Skew and kurtosis: 

 Do not need data to be ordered 

 Come pre-canned in Microsoft 
Excel, SKEW() and KURT() 

Source: Threadneedle, Thomson Datastream 
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29 

Time varying volatility explains some market index fat tails, particularly 

on the upside 

Source: Threadneedle, 

FTSE, Thomson 

Datastream 
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Not just a developed market phenomenon 30 

Source: Threadneedle, FTSE, Thomson Datastream 
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More periods give more scope for extreme events 31 
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Time-varying volatility remains an important contributor 32 
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Appendix B: Time-varying volatility in joint return series 33 

 Quantile-quantile box plot had peaks in four corners 

 One reason is that chart includes a mixture of distributions 

 Different pairs of sectors have different correlations hence different 
distributions 

 We can eliminate this effect by focusing on principal components 

 Orthogonal by construction 

 Hence all disjoint pairs of principal components have the same (i.e. zero) 
correlation 
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Applying PCA to sector relatives 34 

1

5

9
13
17

0

500

1000

1500

2000

2500

3000

1
5

9
13

17

Sector 2

Sector 1

Number of observations in each 
fractile-fractile pairing

2500-3000

2000-2500

1500-2000

1000-1500

500-1000

0-500

1

5

9
13
17

0

500

1000

1500

2000

1
5

9
13

17

Sector 2

Sector 1

Equivalent for principal 
components (weighted by 

eigenvalue size)

1500-2000

1000-1500

500-1000

0-500

0%

10%

20%

30%

40%

1 3 5 7 9 11 13 15 17 19 21 23

Eigenvalues (sorted by size)

% of total

RMT cut-
off

-1.0

-0.5

0.0

0.5

1.0

1 3 5 7 9 11 13 15 17 19 21 23

Eigenseries: skewness

skew

95%ile

5%ile

-2.0

0.0

2.0

4.0

6.0

1 3 5 7 9 11 13 15 17 19 21 23

Eigenseries: (excess) kurtosis

(excess) 
kurtosis

95%ile

-2.0

0.0

2.0

4.0

6.0

1 3 5 7 9 11 13 15 17 19 21 23

Underlying data series: (excess) kurtosis

kurtosis

95%ile

5%ile

 Reduced clumping in 
corners of 2-
dimensional principal 
components co-
dependency  

 Although not 
eliminated 

 Individual marginal 
distributions for 
principal components 
still exhibit significant 
(excess) kurtosis 

Source: Nematrian, Thomson Datastream 
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Adjusting for time-varying volatility in joint return series 35 

 Possible ways of adjusting for recent past time-varying volatility include 

 Longitudinal: adjust each series in isolation by a different (time-varying) factor 
dependent its recent past volatility, or 

 Cross-sectional: adjust every series by the same (time-varying) factor 
dependent on the average spread of returns across the sectors in the recent 
past 

 Using contemporaneous data, such as implied volatilities and correlations (not 
analysed further here, discussed in more detail in “Market Consistency”) 

 E.g. use rolling 12 month window for both longitudinal approach and 
cross-sectional approach 

 Choice of window a trade-off between “immediacy” and sample error 
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Longitudinal time-varying volatility adjustment 36 
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Source: Nematrian, Thomson Datastream 
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Cross-sectional time-varying volatility adjustment 37 

 Even flatter 2-
dimensional co-
dependency for 
principal components 

 Even less (excess) 
kurtosis in marginals 

 Although average 
(excess) kurtosis still 
noticeably positive 

 Particularly for 
“significant” principal 
components 
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Back-testing time-varying volatility adjustments 38 

 Calculate through time observed return divided by estimated tracking error 

 Each month, estimate out-of-sample covariance matrix and hence tracking error 
using prior monthly relative returns. Start 36 months into dataset. Apply to 100 x 23 
random portfolios (100 with 1 sector position, 100 with 2 sector positions etc.) 

 Calculate percentiles and moments for observed spread of this statistic 

 Cross-sectional adjustment not quite as effective as we might have hoped 

 Refine with “contemporaneous” estimates of volatility and average correlation? 

kurtosis 90%ile 99%ile 99.9%ile 

Unadjusted data 2.3 1.2 2.7 4.3 

Longitudinal adjustment 1.2 1.2 2.5 3.8 

Cross-sectional adjustment 0.8 1.3 2.6 3.8 

c.f. expected if Gaussian 0.0 1.3 2.3 3.1 
Source: Nematrian, Thomson Datastream 
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Other sources of fat tails? 

 Some fat tails still seem to come “out of the blue” 

 E.g. Quant funds in August 2007 

 Too many investors in the same crowded trades? Behavioural finance implies 

potentially unstable 

 For less liquid investments , impact may be via an apparent shift in price basis 

 Should only affect specific investors? 

 System-wide equivalents via leverage? 

 Leverage introduces/magnifies liquidity risk, forced unwind risk and variable 

borrow cost risk 
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