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Abstract

The global credit crunch has forcefully highlighted the impact of extreme market events
on both the asset and liability side of a pension plan’s balance sheet. Over the course of
2008 there were severe falls in global stock markets because of the financial crisis and, in
particular, the failure of Lehman Brothers. However, the dramatic collapse in pension plan
solvency that was observed in early 2009 was not caused solely by the significant falls in the
value of pension plan assets that had occurred. In March 2009 quantitative easing pushed
bond yields significantly lower, thereby increasing the present value of defined benefit pension
liabilities. As a consequence, the net funding position of defined benefit pension plans in the
UK swung dramatically from a surplus of 149.2bn in June 2007 to a deficit of 208.6bn in
March 2009, back to a surplus of 35.5bn in February 2011 and then back to a deficit again
of 206.2bn in March 2012.

These turbulent conditions highlighted the need to capture extreme market movements
in the modelling of future pension fund solvency risk. Traditional models of asset returns
assume that the statistical parameters that drive asset returns and interest rate changes
remain constant over time. In these ‘one state’ models, stock markets might produce average
returns of approximately 10% a year every year. It has recently been recognized that average
returns, the variance of returns and the covariances between returns to different asset classes
can be more accurately modelled using parameters that switch between more than one set
of values. As a result, these multi-state’ models are gaining in popularity as the benefits of
applying such models to practical problems, such as asset allocation decisions, are becoming
increasingly recognized in a number of fields. In particular, these models can capture rare,
but extreme, market events, the time-variation in asset return volatility and the ”fat-tailed”
nature of stock returns.

We therefore model the future solvency of defined-benefit pension plans using regime
switching models and compare the outcomes with those of traditional one-state models. Our
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results show that future projections of pension plan solvency are highly model-dependent.
In particular, if discount rates are assumed to remain constant, then regardless of the choice
of model (one-state or multi-state) the probability of future deficits is dramatically under-
stated compared to forecasts where a stochastic discount rate process is used. Moreover, our
results suggest that by allowing for leptokurtosis in asset returns the probability of a future
deficit is much greater. However, it is also important to note that allowing for correlations
between asset returns and the discount rate significantly reduces the assessed probability of
underfunding in the future.

1 Background

This paper focuses on the estimation of future pension plan solvency in the presence of
extreme market movements. The relevance of these issues was highlighted by the Actu-
arial Professions Benchmarking Stochastic Models (BSM) working party that considered
modelling extreme market events. The BSM working party paper reviewed a number of
techniques for both modelling and calibrating extreme market scenarios. One of the most
important conclusions was that severe equity falls that are assigned a 0.5% probability by
the normal distribution of stock returns occur much more frequently than this in practice.
Consequently, such events need to be more carefully analysed in any modelling of future
events. Moreover, in looking at the recent past, there are a number of scenarios that present
extreme risks to pension plan solvency, and the full extent of these risks only emerges when
the estimation of future asset and liabilities are considered jointly.

Our core empirical methodology involves the use of multivariate Gaussian regime switch-
ing models. This framework is well suited to modelling asset returns and extreme market
events. Due to their ability to capture different states of the economy, Markov Switching
models have been widely used broadly in economics and finance literature. For example, early
economics studies used Markov switching models to capture structural breaks in the econ-
omy (see Hamilton, 1989; Lam, 1990; Raymond and Rich, 1997; Storer, 1995). In addition,
these models have also been used in a wide range of other settings. For example, combining
Markov Switching with other models such as GARCH (Hamilton and Susmel, 1994); error
correction (Psaradakis, Sola and Spagnolo, 2004); and causality, (Ravn, Psaradakis and Sola,
2005).

In finance Markov Switching has also been used in option pricing, (Boyle and Draviam,
2007); bond pricing, (Elliott and Siu, 2009) and portfolio selection, (Zhou and Yin, 2003).
Moreover, Regime Switching models have been shown to more accurately capture the in-
creased correlations between asset returns that often occur in bear markets (Ang and Bekaert,
2002) and that such models estimate the 1% Value-at-Risk levels for portfolios better than
many alternative approaches, suggesting that this is a useful way of modelling rare events
(Kawata & Kijima, 2007).

As a result, this method has also been shown to be applicable in practice and it has been
regularly applied to asset allocation problems (See for example, Guidolin and Timmerman,
2008). There has, however, been only limited use of this framework for assessing pension
fund solvency risk. Although Chen and Yang (2010) do apply this approach, they present
a highly stylized framework that would not be readily adapted for practical application as
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they use closed form models and focus on dividend payout policy.
We base our analysis on N = 5 asset classes for the asset side of the balance sheet and

one discount rate for the liabilities side.1 On the asset side, we use the FTSE All Share
total returns from Datastream. All the other data for the asset side of the balance sheet
are taken from Global Financial Data. These are the United Kingdom 10 year Government
Bond total return index, S&P500 total returns index, Japanese Topix total returns index and
MSCI Europe total returns index. Data are taken at monthly frequency over the interval
January 1970 to December 2010. All returns are calculated in sterling terms. In order
to calculate the present value of the liabilities, we use the 10-year UK Treasury bond yield,
rather than the AA corporate bond rate, as given by Datastream. Notice that this is an
ex-ante yield rather than an ex-post total return.

In the table below, we present summary statistics for the total monthly nominal returns
to each series that we consider on the asset side of the balance sheet. Throughout this study
we use lognormal returns; rnt = ln (Int/Int−1), where Int is the total returns index of asset
class n:

Mean Standard Deviation Skewness Excess Kurtosis
UK Equity Returns 0.809% 5.730% -0.710 7.436
US Equity Returns 0.895% 5.264% -0.637 2.448
European Equity Returns 0.936% 4.716% -1.010 3.904
UK Treasury Returns 0.784% 1.742% 0.446 2.424
Japanese Equity Returns 0.833% 6.012% -0.054 0.517

with correlations over the period (with the assets in the same order):
1.00 0.56 0.83 0.25 0.33

1.00 0.70 0.02 0.40
1.00 0.15 0.47

1.00 0.06
1.00


Our purpose is to construct a statistical model that captures the broad characteristics of
asset returns as reflected in these summary statistics. Under a frequentist approach, it is
then assumed that these stochastic properties will not change in the future. While this
is a common assumption in both industry and academia, it is not uncontroversial. For
example, there is an extensive literature that argues that average historic returns to equity
substantially overestimate the current ex-ante equity premium (Freeman, 2011, and the
references therein). Based on the data given above, the simple annual expected returns to
UK equities is exp (12 (0.809% + 0.5× 5.730%2)) −1 = 12.4%. By contrast, recent surveys
of the equity premium (by, for example, Welch for academics and Graham and Harvey for
practitioners) suggest that most experts believe that the S&P500 will only give around 5%
above the T-bill rate in the medium term future.

1All work in this study is done using asset classes rather than individual assets. This is because the
Markov Switching processes that we use estimates a large number of parameter values. Suppose there are N
assets and S states. Taking the AR(0) model that is employed extensively below, this requires the estimate
of S (0.5N(N + 1) + S − 1) parameters. With 100 assets and four states, this is 20,212 parameter values.
Even with the limited number of asset classes that we do consider, the software does not always converge.

3



For the purposes of this paper, we make no adjustments for potential limitations with
the frequentist approach. However, we would note that it would be possible to do so. For
example, if one were to believe that unconditional expected equity returns are too high,
then the mean estimates could be manually adjusted downwards to reflect this belief. The
regime-switching model would still add value by capturing some of the complex dynamics of
the volatility process.

2 The asset & liability sides of the balance sheet

In order to understand the funding risks for pension funds, it is necessary to model the
asset side of the balance sheet, the liabilities side of the balance sheet and the discount rate
process. For the first of these, let wi represent the proportion of wealth invested in asset i,
with w1 + ...+ wN = 1. Let w be the N -vector with elements wi. We choose weights that
are broadly representative of a standard UK pension fund:

Weightings
UK Equity 25%
US Equity 20%
European Equity 10%
UK Treasury Bond 40%
Japanese Equity 5%

It is assumed that the portfolio is rebalanced at the end of each month to keep these weight-
ings fixed across time.

To keep our illustrative example simple, we assume a stylistic form for expected future
liabilities of the defined benefits pension plan. At all times, the pension fund has future
liabilities stretching over the next thirty years. The first expected liability, in one year’s
time, is C1. Following that, the liabilities are expected to grow at a fixed inflation rate i.
This leads to the following schedule of expected future liabilities:

E0 [Liabilities] T = 1 T = 2 T = 3 ... T = 30 T = 31 T = 32 ...

Year 0 C1 C1 (i+ 1) C1 (1 + i)2 ... C1 (1 + i)29 0 0 ...

Year 1 0 C1 (i+ 1) C1 (1 + i)2 ... C1 (1 + i)29 C1 (1 + i)30 0 ...

Year 2 0 0 C1 (1 + i)2 ... C1 (1 + i)29 C1 (1 + i)30 C1 (1 + i)31 ...
... ... ... ... ... ... ... ... ...

Given this schedule, the present value of liabilities that will be calculated at any time t
is given by the growth annuity formula PV(Liabilitiest) = C1 (1 + i)t−1G (rft, i, 30) where
G (rft, i, 30) is the thirty year growth annuity value based on the rate rft, that is used at
time t to determine the present value of future liabilities.2 The initial expected cash flow,
C1, is set so that C1G(rf0, i, 30) = 1/(1 + η) . η represents the initial funding level of the

2We ignore term structure issue here. Many financial economists would argue that each separate cash
flow should be discounted at an individual rate that reflects the shape of the term structure that prevails
at that horizon. While we agree with this point, for simplicity, and in keeping with many practitioners, at
time t we discount cash flows of all horizons at the same discount rate rft.
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fund expressed so that, for every £1 of current liabilities the fund has market assets valued
at £1 + η. For our illustrative example, we set η = 15%. We also assume that there is no
net contribution to the asset side of the balance sheet after time zero. New contributions
exactly offset fund payouts. It should be stressed that these assumptions are for simplicity
of exposition. The processes that we describe could easily be extended to more complex
cash flow dynamics and net inflows / outflows from the fund.

There are three issues to consider here in relation to the liabilities side of the balance
sheet. First, we wish to capture the stochasticity in the discount rate process and the
impact this has on solvency risk. Second, we need to capture the correlation structure
between the asset and liabilities sides of the balance sheet. Finally, consider our ex-
pectation today of the present value of future liabilities that we will calculate at some
future time t; E0 [PV (Liabilitiest)] = E0

[
C1 (1 + i)tG (rft, i, 30)

]
. If our cash flow fore-

cast at time t is independent of the prevailing discount rate rft, this can be divided into
E0

[
C1 (1 + i)t

]
E0 [G (rft, i, 30)]. Take the second of these terms, E0 [G (rft, i, 30)]. At time

zero, we do not know the value of rft and we need to be particularly careful about how we
deal with this uncertainty. In particular, the expectation that we currently make of the an-
nuity value that will be prevail at that date is higher than the annuity value at the expected
interest rate; E0 [G(rft, i, T )] < G(E0 [rft] , i, T ). To see this, set i = 4% and T = 30 and
suppose that the discount rate in five years, rf5 might equal 8% or 2% with equal probability.
In this case E0 [G(rf5, i, T )] = 0.5 [G(8%, 4%, 30) +G(2%, 4%, 30)] = 28.236. By contrast,
G(E0 [rf5] , i, T ) = G (5%, 4%, 30) = 24.955. This effect is caused by Jensen’s inequality and
has been very heavily documented in environmental economics, where it leads to a declining
schedule of discount rates with time horizon (Weitzman, 2001) and, in turn, a higher social
cost of carbon. In a pension fund context, ignoring our uncertainty about the discount rates
that we will use at future time t will lead to an underestimate of our expected annuity value
at time t, and thus an understatement of the expected present value of future liabilities that
will prevail at time t.

Given the focus of this paper on pension fund solvency positions, we define zt as the
market value of assets minus the present value of future liabilities as a proportion of the
present value of the future liabilities:

zt =
Vt − C1(1 + i)(t−1)G (rft, i, 30)

C1(1 + i)(t−1)G (rft, i, 30)

Our central interest in this paper is in calculating the probability that zt < 0 for all t up to
a horizon of thirty years. Our analysis is based on six models. The first three will take
a simple one-state lognormal process for asset returns while the last three will incorporate
Markov switching. Models 1 and 4 will have a fixed interest rate: rft = rf0 for all t. All
other models will incorporate an AR(1), or, equivalently, a discrete-time Ornstein-Uhlenbeck
(O-U) model for the discount rate. In Models 2 and 5 the discount rate process will be
independent of the asset returns process. In Models 3 and 6, however, the correlation
between discount rates and asset returns will be included.
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3 Modelling the risk of underfunding: 1-state

3.1 The models

Model 1. Let µt denote the N−vector with elements Et [rnt+1] and Σt to denote the N×N
matrix with elements Covt (rnt, rmt). In Model 1 it is assumed that µt = µ and Σt = Σ for
all t. In addition, it is assumed that log returns are normally distributed.

In this case, the T−period return has expected value and variance mT = Tw′µ and
σ2
T = Tw′Σw. This characterisation of the data accurately captures the observed mean and

standard deviation of historical asset returns, and the contemporaneous correlation between
any two asset classes. It does, though, have a number of weaknesses. First, it does not
capture any higher moments of asset returns — in particular their “fat-tailed’ (leptokurtotic)
properties that are clearly present in the summary statistics of the data. This means that this
model underestimates extreme market events, and therefore underestimates the true spread
of possible future portfolio values. Second, it is well-known that the variance-covariance
matrix of asset returns is time-varying, and this is not captured within this setting.

Model 1 also assumes that the risk-free rate is constant: rft = rf0 for all t. In this case,
the probability that zt < 0 is given by

Prob(zt < 0) = Φ

(
ln
(
C1(1 + i)(t−1)G (rf0, i, 30)

)
−mt

σt

)

where Φ (·) is the cumulative distribution function for a standard normal distribution.
Model 2. In the second model we assume that asset returns remain lognormally

distributed but now allow for the discount rate to follow an independent AR(1), or discrete-
time Ornstein-Uhlenbeck, process:

rft − rft−1 =

{
a+ brft−1 + et
θ(rft−1 − r) + et

where θ = b− 1 and r = −a/θ. This gives the AR(1) process an economic interpretation; r
represents the long-run interest rate value to which the discount rate mean-reverts and θ is
the parameter value that determines the speed and strength of the mean reversion. In this
case the probability density function (pdf) of rft conditional on the current discount rate rf0
is:

f (rft) = N

(
1− bt

1− b
a+ btrf0,

1− b2t

1− b
σ2
e

)
This pdf can be used to determine through numerical integration the probability that the
pension scheme will become underfunded.

Prob(zt < 0) =

∫ ∞
−∞

Φ

(
ln
(
C1(1 + i)(t−1)G (rft, i, 30)

)
−mt

σt

)
f (rft) drft

Model 3. In model 3, we continue to model asset returns as one-state lognormal and also
discount rates by the AR(1) process, but now allow for the observed correlation between
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Figure 1: The probability of default at T months under Model 1, where the discount rate is
non-stochastic and asset returns follow a one-state log-normal process.
.

et and the asset returns process. In this case, we need to run Monte Carlo simulations to
calculate the probability that zt < 0.

To run these simulations we construct the variable xt = rft − (1 + b̂)rft−1 = â + et,

where b̂ is estimated over the total sample. The variable xt is not autocorrelated and
is normally distributed and therefore shares the same characteristics as the asset returns
process. Therefore it can be co-estimated in the variance-covariance matrix along with the
five asset classes. By running 10,000 simulations of these six normally distributed, zero
autocorrelation but non-zero cross-correlated variables, we can construct 10,000 values of
Vt , rft and hence zt. The proportion of these simulations that have a value of zt < 0 reveals
the probability of a pension scheme running into deficit.

3.2 The results

In figure 1, we present the results from Model 1 when i = 4%. Results are presented
both in closed form and as determined under Monte Carlo simulation. It can be seen
that the probability of default rises quickly and then dissipates quickly. This is because,
under a frequentist approach, the expected return to our portfolio is substantially above the
assumed fixed inflation rate of 4%. Therefore the expected returns effect quickly dominates
the stochasticity of the asset returns process. The maximal probability of default is under
4% given the initial solvency of 15%.

In figure 2, we allow for the independent O-U process for the interest rate. Basing
our parameterisations on the deannualised monthly 10-year UK Treasury bond yield for the
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Figure 2: The probability of default at T months under Model 2, where the discount rate
follows an Ornstein-Uhlenbeck process, asset returns follow a one-state log-normal process,
and the discount rate process is independent of the asset returns process.

interval January 1970 to December 2010, we derive an estimate of a = 1.651E − 05 and
b = 0.9964. As noted above, we do not advocate risk-free discounting of pension liabilities,
the choice of this rate simply allows for a long-run interest rate series to enable us to estimate
the models. When this is incorporated the results are dramatically different from Model 1
with the maximum probability of underfunding being close to 17%.

The intuition for this is clear. Suppose momentarily that the portfolio will deliver a
non-stochastic return of rp over the next twelve months. For the pension scheme now to be
underfunded in one year

G (rf1, i, 30) > G (rf0, i, 30) (1 + η)(1 + rp)/ (1 + ri)

Adding the assumption that rp = 8% to previous ones (η = 15% and i = 4%) and given the
data value of rf0 = 3.59%, this corresponds to rf1 < 2.47%. Based on the calibrated 1-state
Ornstein-Uhlenbeck model this movement is not unlikely. The 95% confidence interval for
the interest rate in 12 months is 1.35% to 6.08%. Therefore even if there is no uncertainty
over asset returns, the interest rate uncertainty effect is highly significant. This drives the
difference between the results for Models 1 and 2.

In figure 3, we allow for the covariance between discount rates and asset returns. This
somewhat reduces the perceived pension fund solvency risk, with a maximal probability of
underfunding now being at about 13%. The reason for this is that, in general, asset returns
are negatively correlated with the discount rate. This is most obviously true for the UK
Treasury bonds, which make up 40% of the overall portfolio. As might be expected, the total
return on this asset is highly negatively correlated with the discount rate (-86%). In addition,
UK equity returns are also negatively correlated with bond yields (-32%). Therefore the
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Figure 3: The probability of default at T months under Model 3, where the discount rate
follows an Ornstein-Uhlenbeck process, asset returns follow a one-state log-normal process,
and the discount rate process is correlated with the asset returns process.
.

market value of assets and the present value of liabilities tend to move up and down in
tandem, providing a hedging effect for the pension fund trustees.

4 Modelling the risk of underfunding: 4-states

To overcome the weaknesses of the traditional model, we next extend our analysis to Markov
Switching models. In contrast to the traditional model it is no longer assumed that µt and
Σt are constant across time. Instead, we invoke the Markovian assumptions that, at any
time t, the world lies in one of S states. We use the dummy variable δst ∈ {0, 1} for s ∈ [1, S]
to denote the state that occurs at time t. Market noise is again modelled within any state
as being normally distributed.3

In this Markov world, the probability we assign at time t to the world being in state
s at time t + 1, Probt (δst+1 = 1), depends only on the state at time t. A simple, fixed,
transition probability matrix, M , can then be used to fully describe the stochastic way
in which the prevailing state changes over time. A more detailed description of Markov
Switching processes, the alternatives, and their application in a pension fund context are
given in Kemp (2011).

In order to estimate this multivariate regime switching environment, we invoke the
MSVARlib package in GAUSS (http://bellone.ensae.net/download.html) written by Benoit
Bellone. This code uses maximum likelihood methods to estimate regimes in a vector au-

3This contrasts with, for example, Elliott and Miao (2009, Quantitative Finance, 9, 747-755) who allow
the error terms to be Student-t distributed within a Markov Switching evlauation of Value-at-Risk problems.
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toregressive framework. While Guidolin and Timmerman (2006) demonstrate how to best
determine the specification of this model, we use a four-state process throughout, which is
consistent with their choice of specification to jointly capture US stock and bond dynamics.
This is sufficiently sophisticated to capture many of the broad statistical properties of the
historical data, but is sufficiently limited so that the number of parameters for estimation
does not get out of hand and so the model remains parsimonious.

We present results here only for AR(0) Markov Switching Models, which results in us not
capturing any autocorrelation in the data. This is consistent with standard views of market
efficiency that returns should not be predictable over time.4 This requires the software
to estimate µs,Σs for each state, the transition probability matrix, M , and a time-series of
smoothed probabilities that assign each period in the past to each state. The eigenvectors of
M also give the ergodic probabilities, π, associated with each state — this is the proportion
of time that the economy spends in each of the states over very long time-periods.5

4.1 The Markov environment

Based on the five asset classes on the asset side of the balance sheet, the empirical estimates
of M and π under the AR(0) four state specification are:

M =


0.9791 0.0010 0.0353 0.0444
0.0010 0.9817 0.0010 0.0967
0.0120 0.0010 0.9641 0.0010
0.0080 0.0163 0.0000 0.8578

 , , π =


40.78%
37.84%
14.81%
6.58%


where element Mij =Prob(δit+1 = 1|δjt = 1). For example, M43 reveals that state 3 (almost)
never exists into state 4.

The transition matrix allow us to estimate the expected period of time in any one state
before transition into an alternate state. This is given by

∑∞
t=1 tM

t−1
ii (1−Mii) = (1−Mii)

−1.
This has values of approximately 7 months for state 4 and over 2 years for all the other states.

State 1 For all four states we present three statistics; the average return to each asset, µs,
the standard deviation of each asset’s returns, σs, and also the correlation matrix, Σ∗. The
variance-covariance matrix for that state is easily reconstructed by Σnm = σsnσsmΣ∗snm

Σ∗1 =


1.00 0.74 0.91 0.02 0.47

1.00 0.77 -0.05 0.43
1.00 0.01 0.46

1.00 -0.04
1.00

 , µ1 =


0.00583
0.00862
0.00720
0.00705
-0.0022

 , σ1 =


0.047
0.055
0.052
0.013
0.066


4In unreported results, we have also run estimations with VAR(1) specifications for the data. This has

no substantive impact on our results and comes at considerable computational cost.
5 For each of the S states it is necessary to estimate N values of µs, N(N−1)/2 values of Σs. In addition,

it is necessary to estimate S(S − 1) values of M . This is a total of S (N + 0.5N(N − 1)) + S(S − 1) =
S (0.5N(N + 1) + S − 1) estimates. Using N = 5 and S = 4, this is 72 parameter values.
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This is the single “bear state” and is the most common state with a high probability of per-
sistence. Average returns are somewhat below their unconditional averages, while standard
deviations and correlations are close to their unconditional averages.

State 2 This is the second most common state, with the highest probability of persistence.
This is the bull state with high expected returns, low volatilities and low covariances.

Σ∗2 =


1.00 0.27 0.70 0.45 0.15

1.00 0.46 -0.02 0.34
1.00 0.24 0.41

1.00 -0.02
1.00

 , µ2 =


0.016
0.013
0.015
0.010
0.022

 , σ1 =


0.048
0.048
0.034
0.019
0.054


State 3 State 3 is the second rarest state and has a high probability of persistence. This
is the low volatility state. While the means and correlations are close to the unconditional
averages, the volatilities are low in this state.

Σ∗3 =


1.00 0.65 0.91 -0.08 0.47

1.00 0.76 0.01 0.37
1.00 -0.10 0.42

1.00 0.01
1.00

 , µ3 =


0.013
0.010
0.015
0.004
0.008

 , σ3 =


0.021
0.028
0.024
0.012
0.046


State 4 State 4 is the rarest state and has the lowest persistence rate. Nevertheless, for
the modelling purposes of this paper it is arguably the most interesting as it represents the
“crash” state. It has very low expected returns, high correlations between asset classes
and high volatility. The joint effect of low expected returns and high correlations is also
reported by Ang and Bekaert (2002) on US data.

Σ∗4 =


1.00 0.68 0.88 0.32 0.43

1.00 0.82 0.22 0.52
1.00 0.35 0.66

1.00 0.51
1.00

 , µ4 =


-0.038
-0.018
-0.022
0.010
-0.009

 , σ4 =


0.139
0.088
0.091
0.032
0.064


Simulating asset price dynamics In order to understand how well this AR(0) Markov
Switching Process captures the unconditional statistical properties of the data as presented
above we have simulated asset returns for 100,000 months. The summary statistics are
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presented below:

Mean Standard Deviation Skewness Excess Kurtosis
UK Equity 0.781% 5.807% -0.910 6.659
US Equity 0.863% 5.308% -0.217 1.143
European Equity 0.920% 4.794% -0.481 2.421
UK Bonds 0.786% 1.723% 0.206 1.631
Japanese Equity 0.743% 6.077% -0.098 0.171

with correlations over the period
1.00 0.58 0.83 0.24 0.34

1.00 0.71 0.02 0.41
1.00 0.14 0.47

1.00 0.06
1.00


Notice that, this process now broadly captures the excess kurtosis of asset returns. This
is because of the time-varying nature of the variance-covariance matrix. As is well-known,
condition heteroskedasticity leads to unconditional fat-tailed distributions when the process
has a constant mean.6

Simulated portfolio values A priori, we would expect that the presence of fat-tails from
this AR(0) Markov Switching environment would lead to wider 95% confidence intervals for
VT than in the traditional model. This would also be consistent with the findings of Kawata
& Kijima (2007). To test this, we simulate forward the value of the portfolio, VT . We do
this 10,000 times for 360 months. We can then compare these value for T = 5, 10 and 30
years with those from the 1-state model.

.

4-state 1-state
VT T = 5 T = 10 T = 30 T = 5 T = 10 T = 30
Mean 1.71 2.93 26.98 1.69 2.84 23.16
Lower 2.5% 0.87 1.13 4.21 1.04 1.44 6.53
Upper 97.5% 2.80 6.05 98.28 2.58 5.13 60.17

As can be seen, there are significant differences. At a maturity of five years, the tradi-
tional model predicts with 97.5% confidence that the value of the portfolio will be at least
4% more than the initial value. By contrast, the AR(0) Markov Switching model gives a
2.5% chance of a fall of 13%. The differences between the models become ever greater with
increased time horizons.

4.2 Results

In figure 4, we show the results from Model 4, which incorporates Markov switching in the
asset returns process but also assumes that the discount rate rft = rf0 for all t. Now that

6See, for example, http://www.nematrian.com/MixturesOfNormalDistributions.aspx.
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Figure 4: The probability of default at T months under Model 4, where the discount rate is
non-stochastic and asset returns follow a four-state Gaussian Markov switching process.

asset returns are not unconditionally normally distributed, we again use 10,000 simulations
in order to determine the statistical properties of zt. There are two key elements to notice
from this graph. First, by comparing Model 4 against Models 2 & 3, it is clearly that more
accurately modelling the asset side of the balance sheet has less effect on our estimates of zt
than introducing stochasticity into the discount rate process. Second, by comparing Models
1 and 4, it can be seen that allowing for leptokurtosis in asset returns doubles the maximal
perceived risk of default. In addition, the risk at longer horizons is much greater in Model
4 than Model 1.

Figure 5 presents the results from Model 5, where the discount rate is stochastic but
independent of the Markov switching process. This has the highest default probabilities of
all — nearly 20% at its peak. However, the differences between Model 5 and 4 are similar
to the differences between Models 2 and 1.

Model 6 is our most sophisticated model. In this case xt is included as a sixth variable
within the Markov Switching calibration exercise. Within an Ornstein-Uhlenbeck interpre-
tation of the interest rate process, this is equivalent to having the speed of mean reversion, θ,
constant across states but allowing both the long-run interest rate value r and the volatility
of the discount rate process, σ2

e , to be state dependent. There are now 96 variables that
need estimating.

There is one notable problem with this calibration. While we continue to capture
leptokurtosis in the asset returns process, this is less pronounced than reported above. For
example, the excess kurtosis of UK equities drops from 6.659 to 2.785, compared to 7.436 in
the data. While this is a clear improvement on the one-state model there remains a danger
that this calibration still somewhat underestimates the true funding risk. Nevertheless, the
comparison between Models 6 and 5 are similar to those between Models 3 and 2. This
is partly because the correlation between UK equities and discount rates remains negative
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Figure 5: The probability of default at T months under Model 5, where the discount rate
follows an Ornstein-Uhlenbeck process, asset returns follow a four-state Gaussian Markov
switching process, and the discount rate process is independent of the asset returns process.

even in the crash state (-0.18), somewhat in contrast to recent experience in the credit crisis.
Our results suggest that including both interest rate dynamics and leptokurtosis in asset

returns accurately has significant implications for evaluating pension fund solvency risk.
In particular, the risks are greater and much longer-lasting than more naive models might
suggest. A key warning, though, is that if interest rate dynamics are modelled separately
from asset returns dynamics than this may well result in an overestimation of risk.

4.3 Modelling the future funding position of the fund

In addition to revealing the probability that zt < 0, the simulations also present broader
statistical information about this variable. The following table presents some summary
statistics for zt at horizons of 1 and 5 years for the four models with stochastic interest rates:

zt Mean Median Lower 2.5% Upper 2.5%
One year horizon

Model 2 0.259 0.237 -0.188 0.834
Model 3 0.250 0.238 -0.127 0.699
Model 5 0.252 0.228 -0.197 0.843
Model 6 0.231 0.217 -0.141 0.680

Five year horizon
Model 2 0.762 0.636 -0.343 2.638
Model 3 0.723 0.645 -0.227 2.094
Model 5 0.741 0.595 -0.386 2.771
Model 6 0.610 0.500 -0.285 2.119
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Figure 6: The probability of default at T months under Model 6, where the discount rate
follows a four-state Markov switching Ornstein-Uhlenbeck process, asset returns follow a
four-state Markov switching process process, and the discount rate process is correlated
with the asset returns process.

Again, the effects of accurately modelling the underlying dynamics are dramatic. Despite
starting with an initial funding surplus of η = 15%, the most sophisticated model predicts
that the lower 2.5% of funds will be more than 14% in deficit after 12 months and double
that after five years. This again emphasises not only the probability of falling into a funding
shortfall but also, in a Value-at-Risk sense, how severe such a fall might be.

5 Conclusion

This paper has examined the impact of extreme market movements on pension fund solvency.
This issue was forcefully brought home by the credit crunch in 2008 which resulted in sig-
nificant falls in asset values, and the subsequent policy response of QE, which dramatically
reduced AA bond yields. For pension funds this presented the perfect storm. Asset values
were depressed, while the discount rate for the present value of the liabilities were pushed
lower, resulting in inflated liabilities. Jointly, the effect was to leave huge deficits on the
balance sheet of pension funds. As a result, to better estimate future solvency scenarios it
is critical that both asset returns and discount rates are modelled jointly.

To undertake this analysis we use Markov Regime Switching Models. The modelling
choice seems appropriate given its widespread use in both academic and practitioner work.
Moreover, this type of modelling addresses some of the key issues raised by the Actuarial
Profession BSM Working Party in capturing extreme market movements. Markov Regime
Switching Models can capture, rare but extreme market events, time-varying asset return
volatility and the ‘fat-tailed’ nature of stock returns.
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Our results show that future projections of fund solvency are extremely sensitive to
modelling choices. In particular, our analysis shows the importance of estimating a stochastic
interest process that is allowed to vary with asset returns. If interest rates are allowed to
remain constant through time, then both standard ‘one-state’ model and the ‘multi-state’
Markov Regime Switching model significantly underestimate the likelihood of future pension
plan underfunding. Where interest rates are estimated as a stochastic process that varies
with asset returns, then our results suggest that both the traditional ‘one-state’ model and
the ‘multi-state’ model predict a much higher proportion of underfunded pension plans in
the future. Although the difference between the most sophisticated multi-state model and
the traditional one-state model graphically do not appear to be large, the multi-state model
predicts between approximately 2.5% and 4.5% more schemes underfunded and the increased
number of underfunded schemes is persistent through time.

These results have a number of pension management and policy considerations. From a
micro pension management perspective, the advice that is given to pension managers must
be carefully explained. The presentation of one result or one type of result (i.e. a fixed
discount rate), does not present an accurate picture for decision making. In particular a
much broader and clearer discussion about potential outcomes would allow for more effective
decision making around issues such as short-term and long term funding plans, potential risk
management strategies and asset allocation decisions.

From a macro-prudential perspective understanding the potential impact of these dif-
ferent outcomes in both the short and long-run has huge implications for macro-prudential
pension regulation. For example, if our models we re-calibrated to incorporate a sustained
period of low asset returns then the percentage of funds that are likely to have deficits would
increase at the further out projections. Consequently, a much richer data set of future pen-
sion outcomes could be estimated and better decisions could be made in terms of pension
funding at a macro level. Moreover, from the perspective of the TPR scheme specific sen-
sitivities to potential future outcomes could be considered and so the identification of ‘at
risk’ schemes may become better, while for the PPF a richer set of future scenarios could be
projected that may help with the identification of potential funding pressures.
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