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Abstract 
 
This paper proposes a simulation-based approach which it primarily applies to the problem of 
identifying the fair (i.e. market consistent) valuation of books of derivatives. The proposed approach 
offers significant run-time improvements relative to more traditional simulation-based approaches 
when applied to this problem. It is particularly well-suited to derivative books that depend on a 
relatively small number of underlyings, including ones that in the banking, asset management or 
insurance worlds arise if customers are guaranteed that future fund-linked payouts will not fall 
below specified floors. The approach typically involves the preparation of a larger base simulation 
set (using traditional techniques usually alongside low order moment fitting variance reduction 
techniques) and creating from this base set a smaller collated simulation set with only the latter then 
applied to the payoffs being valued. Weights ascribed to the individual collated simulations may vary 
to optimise valuation accuracy, or they can default to equal weighting if there is no strong reason to 
diverge from this simpler variant. A refinement involves the valuation algorithm typically being 
segmented by reference to an indicator (in the example explored in the paper the adjusted ratio of 
the strike price to the price of the underlying) with different smaller collation sets being used 
depending on the range within which this indicator lies and/or with weights and values ascribed to 
different simulation points in the collated simulation set being selected to facilitate more accurate 
approximation of the payoff function. The paper concludes with an explanation of how the same 
approach can be applied to problems outside the derivative pricing (or even the broader financial) 
arena, including to engineering control process problems, if the underlying problem to be solved is 
amenable to simulation techniques and if run-time efficiency is desirable. 
 
1. Introduction 
 
1.1 Financial markets involve the trading of financial instruments. The market values (market 

prices) ascribed by markets to these instruments characterise consensus market views, i.e. 
market implied views, on the future behaviours of economic factors that might influence 
these instruments. The growth of derivatives markets over the last few decades has 
stimulated considerable research into option pricing theory, i.e. how best to ascribe market 
or market-like values to options and other derivative instruments that are consistent with 
prices observed for simpler financial instruments to which the instrument being valued 
relates. 

 
1.2 Originally, this process tended to focus on identifying prices likely to present profit 

opportunities for market makers and others active in the marketplace. As the stock of such 
instruments grew, appropriate ways of establishing market or market-like valuations for 
such instruments became increasing important to a wider range of financial practitioners, 
including accountants, actuaries and others responsible for valuing such instruments on a 
regular basis. In some parts of the financial community the values thus derived are referred 
to as fair values, in other parts it is more common to refer them as market consistent values, 
if the process is not as simple as just lifting an actual (traded) market price from a suitable 
market feed. An exploration of the concept of market consistency is provided by Kemp 
(2009). 

 
1.3 Regulators have also become increasingly interested in applying such valuation approaches 

even when the exposures concerned are not directly traded on financial markets. For 
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example, the introduction of the Solvency II regulatory framework for EU insurers at the end 
of 2015 strengthened the need for EU insurers of all sizes to determine market consistent 
valuations for guarantees given to policyholders, even though no active market involving 
third parties exists for most individual insurers’ guarantees. Solvency II specifically mandates 
a market consistent approach to the valuation of insurer liabilities (and assets) for regulatory 
capital purposes. Instruments held in bank trading books or in asset management portfolios 
also typically need to be fair valued. 

 
1.4 The market standard approach in the insurance industry to carry out market consistent 

valuations of such exposures involves the use of an economic scenario generator (ESG). An 
ESG is a tool that can deliver a set of market consistent scenarios characterising how 
economic factors on which such exposures depend (including asset returns) might develop 
in the future. Smaller firms in this industry thus face the challenge of how to access 
economic scenario generators that are proportionate to their needs, without incurring 
excessive costs. Outside the insurance industry different terminologies are common but the 
underlying concepts and mathematical principles are typically similar, particularly if the 
payoffs are complicated enough to require simulation-based valuation techniques1. 

 
1.5 Traditionally, the simulations used in these exercises have been created by: 
 

(a) Developing a credible (economic) model of how the world might behave in the future 
(b) Overlaying, where necessary, adjustments to the model to ensure that where practical 

the model statistically respects the Principle of No Arbitrage 
(c) Randomly simulating future evolutions of this model, usually using Monte Carlo 

simulation techniques (typically but not always choosing the simulations so that they 
have equal probability weights) 

(d) Placing a present value on the payoffs resulting from the relevant exposures by 
probability-weighting the present values of the payoffs arising in the different 
simulations. If the simulations are chosen with equal probability weights, this 
computation involves a simple (unweighted) average across the simulations. If weights 
are unequal, a weighted average is needed. 

 
We refer to this simulation approach as the ‘traditional’ (simulation-based) derivative pricing 
formulation. 
 

1.6 If the underlying economic model in Section 1.5 is chosen in an unconstrained manner and if 
a naïve approach to discounting is adopted then the end results will rarely respect the 
Principle of No Arbitrage. For example, suppose we assume that equities will on average 
outperform fixed income assets, perhaps because we observe that this has typically proved 
to be the case in the past over long enough time periods, at least for developed western 
economies that weren’t on the losing side of World War II. Suppose we also discount future 
cash flows from both asset classes using identical discount rates. We will then typically 
conclude that equities represent better value than fixed income, even though equities with a 
market worth of €1 now currently trade at the same price as fixed income assets with the 
same market worth of €1 now, i.e. both trade at €1. A way to square this circle without 

                                                           
1 Please note that in the insurance industry, ESGs can also be used to create non-market consistent scenarios 
which insurers can use for purposes other than the market consistent valuation of exposures. These include 
using the ESG to simulate the future liabilities on a ‘real world’ basis (that e.g. includes some assumed return 
differentials between asset classes) but in these simulations then valuing the liabilities at future points in time 
using a different, usually more market consistent, basis. The approaches described in this paper can also be 
applied to such problems, see Section 4.23.  
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altering chosen ‘real world’ probabilities of outcomes is to adjust the discount factors 
applied to different future cash flows when determining present values. This is the genesis 
behind the idea of stochastic deflators.  Alternatively, we may use a common discount factor 
and adjust the probabilities used in the model so that they are risk-neutral. If suitably 
chosen, these two approaches will provide the same end-result. For simplicity, we 
concentrate in this paper on the risk-neutral approach. The stochastic deflator variant is in 
any case rarely used outside the insurance industry. A focus on the risk-neutral approach is 
therefore likely to be more intuitive to a broader readership. 

 
1.7 Where the underlying economic model is particularly simple, it is sometimes possible to 

identify analytical equivalents to the above, i.e. an analytical formula that mirrors the limit 
of the present value that would be determined using the above simulation approach if 𝑛 →
∞ where 𝑛 is the number of simulations used. Examples are the celebrated Black-Scholes 
option pricing formulae and variants, see Appendix A. An ‘analytical formula’ is here 
understood to be one that only involves ‘standard’ mathematical functions. Even so, the 
term still has a flexible interpretation as there is no single agreed list of ‘standard’ 
mathematical functions. Usually the functions are limited to relatively well-known ones that 
can be computed without much difficulty in standard tools for carrying out numerical 
calculations such as Microsoft Excel. However, many more obscure mathematical functions 
can be useful for numerical calculations in specific circumstances. For example, the Maple 
symbolic algebra system includes the Whittaker M and Whittaker W functions, which are not 
(at the time of writing) available as built-in functions in Microsoft Excel2, but can be 
manipulated and computed numerically (and symbolically) in Maple. In principle, we can 
create our own analytical functions provided they have well-defined properties, which in this 
context could merely be that they represent the solution in the limit as 𝑛 → ∞ to some 
specified option pricing problem (although this is not the usual way in which the term 
‘analytical’ is interpreted). If we exclude this technical extension to what we understand by 
‘analytical’ then it is generally impractical to identify an analytical formula for the exact 
valuation of fund-linked guarantees if the provider has some flexibility to modify either the 
payouts or the structure of the asset portfolio on which they depend. These flexibilities may 
be codified in the form of assumed management actions that the providing firm might adopt 
in the future.  

 
1.8 In this paper we adopt a rather different philosophical approach, although one that is still 

formally equivalent in a mathematical sense to the approach described above. We call this 
the interpolation formulation. In this formulation, the valuation approach (and by 
implication any use of simulation-based techniques within it) operates by: 

 
(a) Identifying a set of economic variables (e.g. asset index levels) that provide the universe 

of factors that are assumed to influence the future payoffs we are seeking to value 
(b) Specifying a set of market instruments, the prices of which are considered to constitute 

the set of available market observables, and locating the current prices of these 
instruments 

(c) Determining a mathematical function of all available inputs in (a) that simultaneously: 
(1) As far as possible exactly replicates the observed prices of the instruments in (b); 

and 
(2) Provides a credible way of interpolating or extrapolating from these prices to the 

deemed prices of all other instruments / payoffs we might wish to value.  

                                                           
2 Modern web-based tools, such as the Nematrian web function library, see Nematrian (2019a), can also 
extend the range of functions that are effectively accessible on demand through traditional tools such as 
Microsoft Excel or corresponding programming environments. 
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1.9 In the special case as per Section 1.7 where an analytical option pricing model might have 

been used then it is easy to see that the interpolation formulation is formally identical to 
other fair (i.e. market consistent) valuation approaches. The natural mathematical function 
to use in 1.8(c) is this analytical option pricing model (the inputs to which would then be 
chosen to replicate suitable market observables). Where no analytical option pricing model 
is available using conventional definitions of ‘analytical’, the approaches are still equivalent 
in a formal sense, since we can always select for the mathematical function in 1.8(c) the one 
that corresponds to the limiting case as 𝑛 → ∞ of the traditional formulation. Using the 
terminology of 1.7, this involves manufacturing a new ‘analytical’ function which has the 
desired mathematical characteristics. Of course, it isn’t usually practical to identify this 
function using more commonly recognised or accessible mathematical functions. If we really 
believe in the economic model underlying the traditional formulation, then our goal 
becomes one of seeking to identify a suitable interpolation methodology that adequately 
approximates this limiting case without e.g. incurring excessive run-times. 

 
1.10 If the two formulations are formally equivalent then what advantages come from adopting 

the interpolation formulation? Additional insights it provides include: 
 

(a) It becomes clearer to see that the process of valuing instruments3 in a market consistent 
manner involves the mathematical process of integration. Most ways of deriving 
analytical option pricing formulae involve integration somewhere within the derivation. 

(b) Numerical integration requires evaluation of the function being integrated at discrete 
points in the multi-dimensional space spanned by the set of variables on which the 
function depends. These points can be viewed as akin to the simulations introduced by 
the traditional formulation. There is an extensive body of mathematical literature on 
quadrature, i.e. the selection of the best points at which to evaluate a function when it is 
being integrated numerically4, which can further inform the interpolation approach. In a 
formal sense this literature is still applicable to traditional option price techniques, but 
the link is often not very apparent. 

(c) The interpolation formulation highlights that the theoretical correctness of any 
supposed economic model underlying the valuation approach may not be particularly 
important. The interpolation formulation involves specifying / identifying sets of payoffs 
for which we have observed market prices. The implication is that for other payoffs we 
will typically not have observed prices. The economic model influences how the 
interpolation should be done, so needs to have some credibility. But ultimately, we have 
no wholly objective data exactly applicable to the prices to ascribe to payoffs that lie 
outside the set for which we have observed prices. How we interpolate or extrapolate to 
such payoffs is inherently subjective. There is no sure way of doing so more robustly 
except by finding extra market observables closer in nature to the instrument we want 
to value. 

 
1.11 Insights from quadrature theory include: 
 

(a) The quadrature points (or weights) don’t need to be the same for all payoffs. There 
might be one set of quadrature points that is better suited to valuing one set of payoffs 
and a different set of points more suitable for another set of payoffs. This is e.g. relevant 
to how we might incorporate so-called management actions and rebalancing strategies 

                                                           
3 Or insurance policies in an insurance context. 
4 For the purpose of this paper we include identification of points to use for multi-dimensional integrals (as 
well as for one-dimensional integrals) within the meaning of ‘quadrature’. 
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into the pricing algorithm (see Section 4) and to some run-time optimisation approaches 
(see Section 2).  

(b) There are established ways of improving the accuracy of numerical integration, by using 
non-equally weighted quadrature points. An example is Simpson’s rule, see Section 2.15. 
In the traditional formulation this can be thought of as assigning non-equal weights to 
individual simulations. Although the traditional formulation can use non-equally 
weighted simulations, it does not commonly do so. 

(c) Many other techniques can be used to improve the accuracy of numerical integration for 
a given run-time. These include importance sampling and variance reduction techniques. 
Once we switch to a mindset that sees the valuation problem as essentially a problem in 
(usually numerical) integration, we may become more comfortable employing these 
sorts of techniques in derivative pricing exercises. Mathematical packages often 
numerically evaluate common mathematical functions using quadrature approaches but 
often also using different sets of quadrature points for different ranges of input values. 
In Sections 2.32 – 2.36 we see that a similar insight can in principle further reduce 
valuation run-times for some types of payoff. 

 
1.12 Most of the rest of this paper can be thought of as an elaboration of how these insights can 

be best introduced into simulation-based derivative pricing exercises. “Best” or “good” is 
here to be interpreted as primarily a mixture of simplicity of implementation and run-time 
optimisation. It is less about the theoretical robustness of the underlying economic model 
for the reasons highlighted in Section 1.10(c). 

 
1.13 Of course, run-time optimisation is also a flexible concept. For most of this paper we will 

concentrate on the case where we have many individual instruments or instrument 
groupings and each instrument involves a payoff linked to some underlying fund together 
with a guarantee that the payout to the customer will not fall below some prespecified floor. 
It is assumed that we wish to place a fair value on these guarantees. Valuations of books of 
such instruments may group individual ones into model points that are assumed adequately 
to approximate to the average of all instruments included in the group. We will assume that 
the level of grouping of individual instruments has been preselected on other criteria, i.e. for 
the purposes of our analysis can be assumed to be fixed5. 

 
1.14 Suppose 𝑉𝐴,𝑠,𝑛 is the value we would place on the derivative book using just 𝑛 simulations 

selected according to algorithm 𝐴, using (if it involves a random selection of simulations) a 
random seed, 𝑠. Suppose also that if there are 𝑚 instrument groupings then the overall run-
time 𝑇𝐴,𝑠,𝑛 to derive 𝑉𝐴,𝑟,𝑛 is of order 𝑂(𝑚𝑛). Here “of order 𝑂(𝑥)” means behaves like 𝑘𝑥 

for some constant 𝑘 when 𝑥 is large. We then interpret run-time optimisation to mean 
identifying a relatively simple algorithm 𝐴 for which: 

 
(a) The time taken to identify the simulation points is small relative to 𝑇𝐴,𝑠,𝑛 (which will 

always be the case if 𝑚 is large enough relative to the number of underlyings we need to 
model); 

(b) As 𝑛 → ∞, the algorithm tends to the correct limiting value 𝑉∞ (ignoring rounding or 
other errors introduced by the machine precision limit applicable to the computer used 
for the evaluation). 𝑉∞ should be independent of any applicable random seed, see 
Section 1.7. 

                                                           
5 One possible ‘grouping’ approach is, of course, to ascribe each instrument its own model point. This might be 
because the book contains such a wide range of instruments that there is no clear way of grouping them, or 
maybe just because we want a process that does not need to worry about whether any grouping of 
instruments has been done appropriately. 
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(c) 𝑉𝐴,𝑠,𝑛 is statistically as close as possible to 𝑉∞ for 𝑛 as small as possible, which can 

typically be understood to mean that for a given 𝑛, the algorithm aims to keep 𝑄𝐴,𝑛 =

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑉𝐴,𝑠,𝑛 − 𝑉∞) as small as possible. 

 
1.15 As explained in Press et al. (2007), and given that we are assuming evaluation for each 

instrument grouping needs to be done separately, a naïve (basic) Monte Carlo simulation 

approach with run-time 𝑚𝑛 will have 𝑄𝑀𝐶,𝑛 ≈ 𝑘𝑀𝐶𝑛−1 2⁄ , where 𝑘𝑀𝐶 is a (near) constant for 
instruments with similar characteristics. Our goal is to identify an algorithm, 𝐴, with a run-
time 𝑚𝑛 that has 𝑄𝐴,𝑛 ≈ 𝑘𝐴𝑛−𝛼 with 𝑘𝐴 small as possible (and/or with an 𝛼 higher than 0.5). 

 
1.16 Most of the remainder of this paper (most of Sections 2 – 5) explores the application of a 

proposed new approach to simulation in the area of finance (and specifically in derivative 
pricing and related areas). The proposed new approach does, however, have broader 
applicability. In Section 6 we explore its applicability to a wider range of problems including 
some involving engineering control processes and business processes.  

 
2. A single period reinvested asset class index 
 
2.1 In this section we use a simple example to illustrate the formal equivalence but practical 

mindset differences between the traditional formulation and the interpolation formulation. 
We also introduce the main innovation in this paper, i.e. a new approach to simulation, and 
specifically how it might be applied in the field of derivative pricing. We call it the targeted 
quantile-spacing approach. It meets the goal of offering a ‘good’ way of selecting simulations 
within the interpolation formulation. Most of the remaining sections of this paper aim to 
demonstrate that the targeted quantile-spacing approach continues to offer a ‘good’ 
solution even for more realistic problems. 

 
2.2 Our example involves a riskless asset and a single risky asset class (i.e. ‘fund’) that has 

behaviour over the period from 𝑡 = 0 to 𝑡 = 𝑇 aligned with that of a reinvested index that 
has returns over instantaneous consecutive time periods that are independent identically 
distributed normal random variables with mean 𝜇𝑑𝑡 and variance 𝜎2𝑑𝑡 where 𝑑𝑡 is the 
length of each such (small) time period and 𝜇 and 𝜎2 are constant. The reinvested index 
value thus forms a Brownian motion. The rolled-up return index on the riskless asset over 
the time period (0, 𝑇) is assumed to be 𝑒𝑟𝑇 where 𝑟 is constant. The rolled-up return index 
(before expenses) on the risky asset over the time period (0, 𝑇) is taken to be 𝑆𝑇 and after 
expenses that are a fraction 𝑞𝑗 per unit time of the rolled-up fund value in the meantime is 

taken to be 𝑆𝑇𝑒−𝑞𝑗𝑇. The opening fund level (the price of the underlying) is 𝑆0. We assume 
that the we wish to value at time 0 a payoff at time 𝑇 that is: 

 

𝑁𝑗 max(𝐾𝑗 − 𝑆𝑇𝑒−𝑞𝑗𝑇 , 0) 

 
2.3 This corresponds to the situation where the firm has many customers, with customer 𝑗 

having an investment of 𝑁𝑗  units in the underlying (all units being identical, except for a 

fund-value based annual management charge of 𝑞𝑗 which might vary by customer). The firm 

wants to determine the cost (fair value) of the guarantee that the overall payout will not be 
less than 𝑁𝑗𝐾𝑗. 

 
2.4 All the usual additional assumptions used in the derivation of the Black-Scholes formulae are 

assumed to apply (e.g. no arbitrage, no frictions, ability to borrow short, no expenses other 
than those represented by the 𝑞𝑗, liquid markets etc.). Using standard no-arbitrage 

arguments, we can analytically value this payoff in a market consistent manner by using the 



7 
 

Black-Scholes formula for a put option (or more precisely, the Garman-Kohlhagen 
generalisation to a security that pays away a continuously compounded dividend)6, i.e. the 

(market consistent) value of the guarantee is 𝑁𝑗𝑃(𝐾𝑗, 𝑞𝑗) where 𝑃(𝐾𝑗, 𝑞𝑗) is the price of a 

put option with strike price 𝐾𝑗, underlying 𝑆0 and continuously compounded dividend 𝑞𝑗 

paid away. Hence: 
 

𝑃(𝐾𝑗, 𝑞𝑗) = −𝑆0𝑒−𝑞𝑗𝑇𝑁(−𝑑1) + 𝐾𝑗𝑒−𝑟𝑇𝑁(−𝑑2) 

 
where 𝜎, 𝑁(𝑥), 𝑑1 and 𝑑2 have the meanings set out in Appendix A. 

 
2.5 Suppose we seek to replicate this valuation using a traditional simulation-based formulation 

without any variance reduction techniques or other ways of reducing sampling error. 
Although the cumulative returns (ignoring expenses) in the above example have a ‘real 
world’ distribution in line with a lognormal distribution, i.e.  𝑆𝑇~𝐿𝑁(𝜇, 𝜎2), the risk-neutral 
probability distribution they follow is a different lognormal distribution with different 
distributional parameters. This is because the risk-neutral distribution needs to have a mean 
of 𝑆0𝑒𝑟𝑇 so that its weighted average discounted value (discounting at the risk-free rate) is 
𝑆0. A simple Monte Carlo simulation approach to valuing the guarantee might therefore 
involve the following: 

 
(a) Select 𝑛 independent uniform random variables, 𝑥𝑘, where 𝑘 = 1, … , 𝑛 
(b) Find 𝑦𝑘 = 𝑁−1(𝑥𝑘), where 𝑁−1(𝑥) is the inverse (unit) normal distribution function 
(c) Estimate the value of the payoff using the following formula: 

 

𝑉𝑀𝐶1,𝑛 = 𝑁𝑗𝑒−𝑟𝑇 ∑ max(𝐾𝑗 − 𝑆0𝑒−𝑞𝑗𝑇𝑧𝑘, 0)

𝑛

𝑘=1

 

 

where 𝑧𝑘 = 𝐺𝑒𝜇𝑇+𝜎√𝑇𝑦𝑘  is the rolled up cumulative return on the underlying (ignoring 

expenses) and, for the naïve (basic) Monte Carlo case, we set 𝐺 = 𝑒(𝑟−𝜇)𝑇−𝜎2𝑇 2⁄ . 
 
Basic Monte Carlo error dependency 
 
2.6 Different values of 𝑉𝑀𝐶1 will arise for different seeds used in step 2.5(a). In Figure 1, we plot 

the resulting sampling error, 𝑄𝑀𝐶1,𝑛, for the case where 𝑇 = 5, 𝜎 = 0.15, 𝑁𝑗 = 𝑁 = 1, 𝑞𝑗 =

0.01, 𝑟 = 0.02, 𝜇 = 0.03 and 𝑆0 = 1, for an at-the-money option (i.e. with 𝐾 𝑆0⁄ = 1) and 
for 𝑛 = 100, 200, 400, 800, 1600, 3200, 6400, estimating 𝑄𝑀𝐶1,𝑛 based on 200 separate 
(basic Monte Carlo) simulation exercises each with its own random seed. It exhibits the  

𝑂(𝑛−1 2⁄ ) error dependency referred to in Section 1.15. 

 

                                                           
6 See e.g. Nematrian (2019b). 
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2.7 If 𝑞𝑗 is the same for all customers (=𝑞) then the only way in which different customers’ 

benefits vary in the situation referred to in Section 2.5 (other than in terms of the numbers 
of units held) is the guarantee level that is applicable, i.e. the level of 𝐾 𝑆0⁄ . It is therefore 
also helpful to understand how the sampling error might vary for different (relative) strike 
prices (i.e. for different 𝐾 𝑆0⁄ ) which we show in Figure 2. 

 
In Figures 2 – 9 we assume that 𝑇, 𝜎, 𝑁, 𝑞, 𝑟, 𝜇 and 𝑆0 are the same for Figure 1 and we also 
similarly assume that 𝑛 = 100. The Figures differ merely according to the sampling 
methodology used. Readers are encouraged to focus on the y-axis scale, as this indicates the 
relative difference in error size for different simulation approaches. A table in Section 2.41 
summarises the results for a single strike level. In each of these Figures we again estimate 
the likely errors present in any single run by carrying out 200 separate simulation exercises 
each with its own random seed. The x-axis is the strike (i.e. the guarantee level, 𝐾 𝑆0⁄ ), the 
solid lines indicate the estimated plus or minus one standard deviation range  above or 
below the estimated mean across the 200 different simulation exercises and individual 
marked points indicate the errors for specific strikes in five specific simulation runs (that 
each use a different random seed). The main aim of showing the results of a handful of 
specific simulation runs is to highlight that for any given simulation exercise the errors for 
different strikes are not uncorrelated. Instead, if the result is biased upwards (or 
downwards) for a specific strike then it is typically also biased upwards (or downwards) for 
all nearby strikes, and hence little or no error diversification arises merely by having a book 
with a range of strikes.  
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2.8 The sample errors shown in Figure 2 (i.e. for the basic Monte Carlo approach) are very small 

in absolute terms when the guarantee is almost certain not to bite (i.e. when 𝐾 𝑆0⁄  is small). 
However, they are much are larger when the guarantee is almost certain to apply (i.e. when 
𝐾 𝑆0⁄  is large). This is because a sample set chosen using the basic Monte Carlo approach 
described above does not (for any given run) have a sample mean for the average rolled-up 
fund value (ignoring expenses) that is equal to the true (i.e. population) mean of the 
underlying distribution. 

 
Low order moment fitting approaches 
 
2.9 Suppose we impose the constraint that the sample and population means are aligned, i.e. 

we set 𝐺 = 𝑒𝑟𝑇 (
1

𝑛
∑ 𝑒𝜇𝑇+𝜎√𝑇𝑦𝑘

𝑘 )⁄ . The resulting sample errors for different 𝐾 𝑆0⁄  (i.e. 

different relative strike prices) are shown in Figure 3 and become much closer to zero both 
when 𝐾 𝑆0⁄  is small and when it is large but are still material for intermediate levels. 

 

 
 
2.10 In Figure 4 we have sampled the distribution subject to the constraint that the sample first 

moment 1

𝑛
∑ 𝑧𝑘 should be fitted to (i.e. be equal to) its true first moment 𝐸(𝑍). This is an 

example of a variance reduction technique, i.e. an approach that is used to reduce the 
variance of the error being introduced by a Monte Carlo simulation. A natural extension is to 
fit to the second moment as well, or (largely equivalently) to constrain the (sample) standard 
deviation of the 𝑥𝑘 so that it also matches its true population standard deviation, i.e. 𝜎. The 
resulting sample errors for different 𝐾 𝑆0⁄  are shown in Figure 4. There is an improvement 
relative to Figure 3, but it is not as marked as between Figures 2 and 3. 
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High order moment fitting approaches 
 
2.11 A much more significant improvement arises if, in effect, we fit to the first 𝑛 moments, i.e. 

we move from a low order moment fitting approach (fitting to the mean and standard 
deviation is just a two-moment fitting approach), to a high order one. One way of achieving 
this (almost exactly) is by selecting the 𝑦𝑘  so that they are a random permutation of equal-
quantile spaced points across the whole domain of 𝑦, i.e. in this instance by setting the 𝑦𝑘  
equal to a random permutation of 𝑁−1((𝑘 − 0.5) 𝑛⁄ ). The resulting sample errors with 𝐺 =

𝑒(𝑟−𝜇)𝑇−𝜎2𝑇 2⁄  (i.e. the same as in the basic Monte Carlo approach) are shown in Figure 5.  
 

 
 

For 𝑛 = 100 and 𝐾 𝑆0⁄ = 1.25 the resulting errors are roughly equivalent to those that 
would have arisen had we used 3,600,000 simulations and a basic Monte Carlo simulation 
approach without any moment fitting, 680,000 simulations with just a first order moment 
fitting approach or 250,000 simulations with second order moment fitting respectively. 

 
2.12 It is somewhat better not to include a further fit to the first two moments when using equal-

quantile spaced simulations, see Figure 6 in which we do so versus Figure 5 in which we have 
not done so7. However, for cosmetic reasons linked to the martingale test it may be simpler 
to explain the process if we do so, see Section 4.15. 

                                                           
7 The typically increasing error towards the right-hand end of Figure 2.6 appears to be mainly due to the non-
linear nature of the payoff function (expressed as a function of equal quantile-spaced points) and to the 
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2.13 It is typically possible to do even better than Figure 5, even if the number of simulations 

applied to individual instruments or instrument groups remains fixed. We describe below 
two different ways of doing so. The first appears to be particularly powerful but struggles to 
have general applicability. It is the equivalent of using Simpson’s rule to carry out numerical 
integration. The second still offers a significant reduction in percentage terms in the error 
and more easily generalises to cases where we have e.g. multiple asset categories, see 
Section 4. It is equivalent to subdividing the function to be integrated into multiple sub-
elements, each of which we integrate more accurately. 

 
A Simpson’s rule type of approach 
 
2.14 Suppose we want to integrate a function numerically over some finite range and suppose 

the function to be integrated is sufficiently smooth. The simplest approach is to use the 
trapezium rule. This is the approach implicit in all the simulation approaches referred to 
above. 

 
2.15 A typically more accurate numerical estimate for the same integral can be achieved using 

Simpson’s rule8, provided the function being integrated is sufficiently smooth. In effect, as 
explained in Press et al. (2007), Simpson’s rule for numerically evaluating a closed integral 
(i.e. one over a finite range), 𝑉∞, involves calculating 𝑉𝑛 and 𝑉2𝑛 (estimates using 𝑛 equally-
spaced and 2𝑛 equally-spaced quadrature points, with both estimates including the start 
and end points) and estimating 𝑉∞ by 𝑉 where: 

 

𝑉 =
4

3
𝑉2𝑛 −

1

3
𝑉𝑛 

2.16 The underlying insight is that we can expand the error between the integral’s sampled value 
𝑉𝑛 and its true value 𝑉∞, i.e. 𝑉𝑛 − 𝑉∞, as a power series in 1 𝑛⁄ . If the function is sufficiently 
smooth and the points are equally spaced in a domain that can be transformed smoothly to 
the one that is applicable to the integral then this power series expansion should take the 
form 𝑉𝑛 − 𝑉∞ = 𝑎2(1 𝑛⁄ )2 + 𝑎3(1 𝑛⁄ )3 + 𝑎4(1 𝑛⁄ )4 + ⋯ and because of symmetry 𝑎3 = 0. 
So, a quadratic improvement ought to be capable of being achieved by using a formula in 
which we net off the term in (1 𝑛⁄ )2 by estimating 𝑉∞ as above. For ‘open’ integrals (where 

                                                           
overall guarantee value rising as one moves from left to right (it rises from c. 0.10 for 𝐾 𝑆0⁄ = 1 to c. 0.86 for 
𝐾 𝑆0⁄ = 2). If more simulation points are included the error typically gets smaller. 
8 See e.g. Nematrian (2019c). 
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the function is ill-defined or infinite at one or both of the range limits, as will usually be the 
case with derivative pricing problems9) a similar improvement is possible if we use 𝑉 =
(9 8⁄ )𝑉3𝑛 − (1 8⁄ )𝑉𝑛 with the 𝑉𝑛 and 𝑉3𝑛 now involving equally-spaced points akin to the 
equal quantile-spaced points used in Section 2.9. 

 
2.17 For a smooth payoff, e.g. a payoff corresponding to the rolled-up value of the fund, using a 

Simpson’s rule type of approach as above can improve the relative accuracy of the modelled 
result very dramatically. 

 
2.18 However, for a kinked payoff, such as the guarantees we are considering here, the function 

to be integrated is no longer smooth, the improvement is not as strong and errors at the end 
of the integration range appear to become more important. In Figure 7 we show the impact 
of using the approach set out in Section 2.15 using a combination of a run that uses 100 
equally spaced quantiles and a run that uses 300 equally spaced quantiles. We note that 
there is an improvement versus the 100 equally spaced quantiles, but it is not as dramatic as 
might have been suggested by the theory in 2.16, particularly bearing in mind that we have 
used 300 simulations when calculating 𝑉3𝑛. 

 

 
 
2.19 Crucial to achieving improvements from a Simpson’s rule type of approach is for 𝑉𝑛 − 𝑉∞ to 

be capable of being meaningfully expanded as a power series. This is only possible if there is 
a suitable regularity between how the points are spaced as 𝑛 changes. Unfortunately, 
introducing additional asset classes typically disrupts this regularity (even if we use equal 
quantile-spacing of points for each individual asset class in isolation or if we try multi-
dimensional analogues). This makes it impractical in most situations to obtain the level of 
improvement potentially available in the single asset class case from using a Simpson’s rule 
type of approach. 

 
The targeted quantile-spacing approach 
 
2.20 The other method we introduce for improving the accuracy of the result has more general 

applicability and is the main novel methodology introduced by this paper. We call this 
method the targeted quantile-spacing approach. At its simplest, if we are generalising from 
the approach set out in Section 2.11, it involves replacing the equally-spaced quantile values 
that we would have previously ascribed to the rolled-up fund value in any given simulation 

                                                           
9 E.g. 𝑁−1(𝑥) is ill-defined at 𝑥 = 0 and 𝑥 = 1. 
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by an average of more finely subdivided quantile values spanning the quantile range 
corresponding to the simulation that this average is replacing. 

 
2.21 For example, suppose the simulations are ranked so that in the equal (analytical) quantile-

spaced approach we would have 𝑧𝑘 = 𝐺𝑒𝜇𝑇+𝜎𝑁−1((𝑘−0.5) 𝑛⁄ ) = 𝐺𝑒𝜇𝑇𝑒𝜎𝑁−1((𝑘−0.5) 𝑛⁄ ) (for a 

lognormal model). Instead of using these 𝑧𝑘 we use 𝑧𝑘 = 𝐺𝑒𝜇𝑇 ∑ 𝑝𝑘,𝑖
𝐵
𝑖=1  where: 

 

𝑝𝑘,𝑖 =
1

𝐵
𝑒

𝜎𝑁−1(
𝑘
𝑛

−
(2𝐵−1)

2𝐵𝑛
+

𝑖
𝐵𝑛

)
 

 
2.22 If we ignore any kinking in the payoff etc., this approach in effect allows us to achieve close 

to the accuracy we would have got with 𝐵𝑛 equal quantile-spaced points but only using 𝑛 
simulations. The impact of using this methodology with 𝑛 = 100 and 𝐵 = 10 is shown in 
Figure 8. 

 

 
 
2.23 In the above, we identified the individual 𝑝𝑘,𝑖 analytically. This is only possible if we know 

the actual form of the quantile function, or equivalently the distributional form of the 
underlying risk-neutral distribution. This will rarely be the case in practice. However, we can 
estimate the 𝑝𝑘,𝑖  arbitrarily accurately by using a Monte Carlo approach (probably enhanced 
with a low moment fitting approach) using a large enough number of simulations 𝑛∗. 
Therefore, unlike the Simpson’s rule type of approach identified above, this approach does 
successfully generalise to the multi-asset class problem. In effect the algorithm is as follows: 

 
(a) Carry out a Monte Carlo exercise (usually enhanced with a low moment fitting approach) 

but with a high number of simulations, e.g. 𝑛∗ = 𝐵𝑛; 
(b) Carry out a similar Monte Carlo exercise but using just 𝑛 simulations; 
(c) Separately rank the simulated outcomes for the relevant fund in (a) and (b); 
(d) Replace (for each asset class) each simulated outcome in (b) by the average of the 

simulated outcomes (or of quantiles of them) in (a) that (in quantile rank terms in (a)) 
most closely accord with the outcome in (b) (in quantile rank terms in (b)) being 
replaced. 

 
In practice, (b) could merely be a subset (e.g. the first 𝑛) of the simulations in (a), as the 
main goal of (b) is to provide a pattern (e.g. through time) that in quantile rank terms is 
plausible. For the one-period example being considered here, all possible outputs of (b) 
produce the same end-result. However, for multi-period or multi-asset class fund-linked 
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underlyings, (b) also provides a structure for co-dependency of simulations through time or 
across asset classes. 

 
2.24 The reason this approach can be expected to assist with valuation run-times for the sorts of 

guarantees referred to in Section 2.3 is because we assumed in Section 1.14 that the overall 
run-time was dominated by the number of instrument groupings present. We still only need 
to carry out the same number of instrument evaluations, i.e. 𝑚𝑛, however large 𝐵 is. The 𝐵𝑛 
‘base’ simulation points are transformed into a smaller number, 𝑛, of collated simulation 
points that can be passed to the engine carrying out the instrument grouping-level 
valuation. We show in Figure 9 the errors if the base simulation set is found using a (non-
analytical) two moment fitted Monte Carlo approach with 𝐵 = 100 and is collated as above 
into a collated set that only has 𝑛 = 100 elements, the remaining parameters being as 
before.  

 

 
 

The key run-time gain is that it is only the 100 simulations in the collated set that are then 
used in the remainder of the valuation process, not the 10000 original simulations. As we 
might expect, the sampling error is around ten times smaller than that shown in Figure 4, i.e. 
roughly what it would have been had we used 𝐵𝑛 = 10000 simulations when preparing 

Figure 4 (given the 𝑂(𝑛−1 2⁄ ) error dependency of a traditional Monte Carlo simulation 

approach). In effect the collated set ‘inherits’ most of the additional accuracy implicit in the 
larger size of the base set, but only needs to pass the smaller set onto the individual 
instrument or instrument grouping stage to do so. 

 
2.25 Of course, if 𝐵 is too large this run-time assumption can break down. A further reason for 

not going overboard with a large 𝐵 is that the accuracy of an approach involving just a 
limited number of collated simulation points is inherently constrained when payoffs are 
kinked, however large 𝐵 is. 

 
2.26 This is because the simulation approach inherently contains approximations depending on 

where a kink lies relative to the selected simulation points. In effect, each simulation point 
groups together specific ‘nearby’ trajectories and assumes that the average payoff across 
these nearby trajectories is linear in the strike. However, if there is a kink in the payoff (as a 
function of the underlying) within this range then this assumption will no longer hold. 

 
2.27 A similar problem can arise if the collated simulation set does not include any simulations 

extreme enough to mature in-the-money for a well out-of-the-money option that happens 
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to have a very high face value. Although such an option may be very unlikely to bite, its value 
could be material if the option nominal is large enough. 

 
2.28 To minimise errors introduced by kinks in the payoffs being valued etc., we may therefore 

need to collate simulations in the base set into a smaller number that are not necessarily 
equally-weighted but instead are positioned to best target the (multiple) payoffs we are 
aiming to value (which then means that the individual simulations in the collated set will 
need to be non-equally weighted). 

 
2.29 The final component of the targeted quantile-spacing approach is therefore to gather 

information about the spread of strike prices or guarantee levels in the book of exposures 
we want to value and to select the weightings ascribed to the individual collated simulations 
accordingly. For example, suppose we wished to collate the original simulations into just 6 
collated simulations which (when ranked) we wanted to have weights 0.1, 0.2, 0.2, 0.2, 0.2, 
0.1 respectively. Then the lowest 10% = 0.1 (0.1 + 0.2 + 0.2 + 0.2 + 0.2 + 0.1)⁄  of the 
original simulations (by rank) would be collated into the lowest ranked collated simulation, 
the next 20% of the original simulations (by rank) in the next lowest ranked collated 
simulation etc. A special case is, of course, to equally weight the collated simulations, which 
is the approach illustrated in Section 2.23. 

 
2.30 More precisely, the final component is to gather information about the effective spread of 

strike prices applicable in all variants of the valuation we want to carry out simultaneously. 
For example, as well as valuing the guarantee, we may want to quantify its likely value in 
adverse (stressed) conditions. Suppose we want not just to calculate the guarantee cost 
using the stated value of 𝑆0 but also how much this cost might rise if 𝑆0 were 20% lower. 
Then we might select our collated simulations so that they would include a suitable range of 
outcomes that practically contributed to the cost of the guarantee if 𝑆0 were 20% lower, 
even if we would ideally have fewer such simulations this far into the tail of the distribution 
if our only aim had been to value the guarantees using the base (unadjusted) 𝑆0. 

 
2.31 However, any gathering and processing of such information reduces the ‘straight-through’ 

automated nature of the process being followed, which is likely to introduce other costs into 
the valuation process. An alternative, if simple equal-weighting is considered inappropriate 
but an automated approach is still wanted, is to select weights formulaically in a manner 
that is expected to be robust across the plausible spectrum of exercises that might be 
carried out. For example, the selection of the collated simulations could be structured so 
that it automatically selected a few points with low weights and with quantiles 
corresponding to points in the tails of the relevant distribution, with the remainder being 
more uniformly spread across the spectrum of more likely outcomes. Such a quadrature 
approach targets greater accuracy in the tails than a pure equally-weighted approach and so 
will be more robust to exercises in which the distribution of outcomes might in some cases 
be shifted significantly towards such tails. 

 
Segmenting or otherwise further optimising the valuation algorithm 
 
2.32 We also observe that if our goal is to be able to value a payoff equal to the rolled-up value of 

the index within a given (small) range of strikes then we only need one collated simulation 
for that range, i.e. the average rolled up index value, i.e. we would have a probability of 
occurrence of 𝑝1 and an outcome 𝑄1 subject to the constraint that 𝑝1 = 1 and with 𝑄1 equal 
to the  (risk-neutral) rolled-up index value. If our goal is also to be able to value a European-
style put or call option with a strike within a given (small) range of strikes then we basically 
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only need two collated simulations, as this introduces four unknowns, 𝑝1, 𝑝2, 𝑄1 and 𝑄2 and 
we can solve for these by requiring 𝑝1 + 𝑝2 = 1 (which will ensure that a zero coupon bond 
is valued correctly), with 𝑝1𝑄1 + 𝑝2𝑄2 equal to the risk-neutral rolled-up index value and 
with the remaining two degrees of freedom used to ensure that, say, two call options, one 
with a strike at the bottom of the strike range being considered and one with a strike at the 
top of the strike range respectively are priced correctly. 

 
2.33 This means that if our aim is solely to minimise run-times then a further refinement is 

possible although it complicates the valuation process. As noted previously, we don’t have 
to use the same collated simulations and weights for every single payoff maturing at a given 
time. Instead, we could use different weighting schemas for different strikes. In the extreme, 
we might for a specific range of strikes be able to value them accurately using just a handful 
of collated simulations (but with this handful varying for different ranges). For example, if 
we slice up the whole range of possible strikes into small sub-ranges and for each range 
identify the 𝑝1, 𝑝2, 𝑄1 and 𝑄2 needed to price (to a linear accuracy) any vanilla call or put 
where the strike lies within the given range then we will in effect have captured a piecewise 
linear approximation to the pricing of European-style vanilla options of the relevant term. 
Quadratic or higher order interpolation can in effect be achieved by adding further points to 
the (typically small) collation set used for a given range of strikes and selecting their weights 
and values appropriately. 

 
2.34 The trick here is to realise that it is usually relatively quick in computing terms to identify 

where a value would be placed in an ordered list or to otherwise subdivide up possible input 
values into distinct ranges for which different algorithms can be used10. For example, for an 
ordered list we can do a binary search, each time identifying whether the entry is above or 
below the half-way ranked point in a range within which we have concluded the entry 
should lie. This can have an 𝑂(log 𝑞) computation cost if there are 𝑞 such ranges. If the 
evaluation of the relevant sub-algorithm applicable if the entry falls within a certain range is 
sufficiently fast (relative to the speed of one that would need to be used if we didn’t 
subdivide the algorithm in this manner) then it becomes computationally efficient to go to 
the trouble of creating multiple sub-algorithms and choosing the one to use based on some 
suitable indicator value (e.g. where the ratio of the guarantee level to the opening level of 
the underlying lies in some suitable table). 

 
2.35 To maximise the efficiency of such a segmented algorithm approach in our example we need 

to measure the strikes relative to the underlying in a consistent manner across different 
instruments. In the example used above, the payoff for each instrument (with a given 

maturity date on a given underlying) is a linear multiple of max(𝐾𝑗 − 𝑆𝑇𝑒−𝑞𝑗𝑇 , 0). This 

means that the relative strikes for such instruments should ideally be measured consistently 

across these instruments as 𝐾𝑗 (𝑆𝑇𝑒−𝑞𝑗𝑇)⁄  or some constant multiple or fraction of this 

indicator. 
 
2.36 It should be noted that there is a trade-off here between extent of segmentation and the 

order of interpolation fit implemented in any given sub-range. Indeed, at one extreme we 
might not actually segment the range at all but might instead seek a high enough 
interpolation order for the entire range of possible strikes by using a collation set that is 
large enough to achieve a suitably accurate representation of the payoff function. However, 

                                                           
10 As noted previously, mathematical algorithms for calculating standard mathematical functions commonly 
adopt such a subdivision, e.g. a relatively efficient way of calculating the inverse normal function 𝑁−1(𝑝) is to 
use separate algorithms for three different ranges 𝑝 might fall within, see Nematrian (2019d), which is based 
on work originally developed by P.J. Acklam. 
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many higher-order interpolation approaches can work poorly in the tails of the overall range 
that an indicator like this might take. To mitigate this risk, we might if planning to adopt a 
higher-order interpolation approach want to have at least three segments (a high, a low and 
an in-between segment), and to adopt interpolation approaches that are lower order in the 
outer two segments than in the in-between one. 

 
Selecting collated set size 
 
2.37 The merits of adopting any refinements as per Sections 2.32 – 2.36 will be influenced by how 

effective simpler non-segmented (and/or non-higher order interpolated) approaches are at 
inheriting the increased accuracy of the base simulation set. We show in Figure 10 the error 
versus the analytical result for a common base simulation set size, 𝐵𝑛 = 10000, for 
different collated simulation set sizes, 𝑛 = 100, 1000, 10000 for just the first individual run 
analysed in the earlier Figures. 

 

 
 
2.38 Figure 10 suggests that collating down to just 100 simulations provides very little 

degradation in simulation accuracy versus collating down to 1000 or 10000 simulations (the 
latter being equivalent to not collating at all), for this range of strikes and other option 
parameters. 

 
2.39 For the run analysed in Figure 10, collating down to say just 10 simulations results in much 

larger absolute errors, particularly at higher strikes. For this run, the highest absolute errors 
arise for high strikes (with a maximum at 𝐾 𝑆0⁄ = 1.8 when the error is -0.008). In relative 
terms this error is still only around 1.2% of the overall option value, which might be within 
the margin of error arising from uncertainties in the true values to use for input assumptions 
(e.g. implied volatilities). In relative terms the error for this run and this collation set size and 
approach is greatest for low strikes. There turn out to be no simulations low enough to 
contribute to the valuation at strikes below around 0.6, resulting in the option price below 
this point being modelled as 0, and therefore having a relative error of -100%. 

 
2.40 This analysis suggests that a collation set size no larger than about 100 is likely to be 

adequate in nearly all circumstances for this type of derivative, particularly if it is combined 
with approaches as described in Section 2.31 that aim automatically to include within the 
collated simulation set (but given reduced weights within it) a handful of outlier simulations. 

 
Summary 
 

-0.0005

0

0.0005

0.001

0.5 1 1.5 2

Figure 10: Error Dependency by Strike: Equal 
quantile spacing collation on 2nd order fit 

n = 10000 n = 1000 n = 100



18 
 

2.41 We set out below in Table 1 a summary of the results for the different methods analysed 
above for a single strike, namely 𝐾 𝑆0⁄ = 1.25. With a high enough 𝐵, the errors arising from 
the targeted quantile-spacing approach appear to become similar to ones arising from some 
analytically selected simulation methods, although depending on the system being used run-
time errors such as “Out of Memory” errors may become more likely11. 

  

Table 1: Estimated errors for different approaches considered above 

Figure Description Number of 
simulations 
for which 

payoff 
evaluated 

Av + 1 Std Av – 1 Std 

2 Basic Monte Carlo 100 0.020288 -0.023417 

3 Aligned first moment 100 0.008787 -0.010095 

4 Aligned first and second moments 100 0.005805 -0.005701 

5 High order (analytical) moment fitting 100 -0.000114 -0.000114 

6 High order (analytical) moment fitting 
with additional 2nd order fit 

100 -0.000434 -0.000434 

7 Simpson's rule type of approach (with 
B=5) (analytical) 

300 -0.000020 -0.000020 

8 Analytical equal quantile-spacing 
approach (with B=10) 

100 0.000009 0.000009 

9 Equal quantile spacing collation 
applied to 2nd order fit (with B=100) 

100 0.000575 -0.000551 

Not 
shown 

Equal quantile spacing collation 
applied to 2nd order fit (with B=1000) 

100 0.000391 -0.000434 

 
 
3. A multi period reinvested asset class index and the martingale test 
 
3.1 The traditional derivative pricing approach to modelling the movement of an asset class 

through time is to subdivide the whole projection period being analysed into individual sub-
periods or time steps and to evolve stochastically an index characterising the asset class 
return through time step by step, starting at the valuation date12. 

 
3.2 As in the single period case, it is possible to model using ‘real world’ probability distributions 

coupled with deflators or using risk-neutral probability distributions and simulation 
independent discount factors. As before, we focus here on the risk-neutral approach. For the 
Principle of No Arbitrage to apply, the present value at outset of a payment of 1 (in the 
numeraire in which the zero coupon bond is expressed) at time 𝑇 needs to be the current 
value of a risk-free zero coupon bond of outstanding term 𝑇, so the simulation independent 
discount factors used need to align with the yield curve that corresponds to the prices of 
such instruments. 

 

                                                           
11 The error exhibited by a given non-analytical run may also exceed the +/- one standard deviation estimate 
shown in Table 1.  
12 Sometimes it is desirable to subdivide the total return between income and capital return (particularly if 
there is a difference between the taxes paid on these two types of return), but we do not explore this topic 
further in this paper. 
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3.3 We note that modelling the stochastic evolution through time of fixed income securities 
presents additional challenges, which are outside the scope of this paper. These arise 
because such instruments, if they do not default in the meantime, will generally mature at 
par at a given point in the future and stochastic modelling of them needs to incorporate this 
‘pull to par’13. Credit-sensitive instrument also present additional challenges, as they in 
effect require the introduction of further yield curves or factors that in a risk-neutral world 
capture similar effects (which may themselves have term structures). Individual credit-
sensitive instruments can also undergo price jumps, if they default or become seen as likely 
to default. It suffices for the purposes of this paper to note that the targeted quantile-
spacing approach can also be applied to problems with such elements. Indeed, the approach 
can be applied whenever it is possible to simulate the future evolution of the underlyings 
(which typically will always be the case for a well-posed derivative pricing problem). 

 
3.4 For other types of securities, e.g. equities, a traditional derivative-pricing algorithm will 

typically assume that the rolled-up value of the asset evolves at each step according to a 
stochastic process that exhibits an expanding funnel of doubt as time progresses. Usually, at 
least in a risk-neutral formulation, returns in different time steps will be assumed to have no 
autocorrelation14, although there may be some assumed heteroscedasticity15, typically 
characterised as some assumed term structure to implied volatility. Within these 
constraints, returns are often assumed to follow some form of Brownian motion, in the 
sense that the shorter the time step the smaller is the practical range of returns that is 
observed (with asset prices not exhibiting sudden jumps except because of one-off dividend 
payments or the equivalent). However, jumps can be included if the modeller thinks this is 
important. In any case, the underlying valuation model will typically discretise time and the 
range of returns that might be observed over the resulting time step will not then be 
infinitesimal in size. Any jump behaviour we care to model can therefore in principle be 
catered for, provided we choose a suitable one-period distributional form for the behaviour 
of the asset class over the relevant time step and allow appropriately for heteroscedasticity. 

 
3.5 Suppose the ends of each time step are at times 𝑇1, … , 𝑇𝑃 = 𝑇 (so there are 𝑃 steps, with 

the first one starting at time 𝑡 = 0 = 𝑇0). The types of guarantees set out in Section 2.3 are 
European-style16 in nature, i.e. have a set maturity date. This means that the present values 
of all guarantees maturing at time 𝑇 depend just on the distribution of the cumulative 
returns between 𝑡 = 0 and 𝑡 = 𝑇. Instead of modelling the evolution over individual time 
steps in isolation, it is therefore generally better (in the sense introduced in Section 1.12) to 
model the evolution in the following fashion: 

 
(a) Set the rolled-up asset class index at time 𝑡 = 0 to be equal to 1 in all simulations, i.e. 

𝐼0,𝑘 = 1; 

                                                           
13 As the strength of this pull to par varies by how far away maturity is, it may also be necessary to model 
differently instruments with different durations, but in a manner that constrains how in aggregate they might 
evolve through time (so that the overall yield curve evolves in a suitable manner and not just individual 
instruments in isolation dependent on it).  
14 E.g. no tendency for particularly positive returns in one period to be followed by particularly positive returns 
in the next period (or for particularly negative returns to appear in consecutive periods) 
15 I.e. some tendency for high absolute magnitudes of returns in one period to be followed by higher than 
average absolute magnitudes of returns in the following period 
16 A European-style option is one that can only be exercised at a specific predefined maturity date. An 
American-style option is one where the holder can exercise it at any time prior to or at a specific predefined 
maturity date. 
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(b) Iteratively identify the sampled distributional form for 𝐼𝑗,𝑘 by selecting a way of 

combining the simulated index values 𝐼𝑗−1,𝑘 at the start of a given time step and the 

random innovations, 𝑦𝑗,𝑘 assumed to arise during the time step some so that the 𝐼𝑗,𝑘  

have in aggregate suitable distributional characteristics; 
(c) If we need to, to back out the returns over the individual time step, 𝑟𝑗,𝑘, using 

𝑟𝑗,𝑘 = 𝐼𝑗,𝑘 𝐼𝑗−1,𝑘⁄ − 1 

 
3.6 If we assume that implied volatility has a constant strike structure17 and a specified term 

structure then step 3.5(b) can usually be implemented for any given time step by solving a 
quadratic equation (the coefficients of which depend on the variances and covariance of 
𝐼𝑗−1,𝑘 and 𝑦𝑗,𝑘 and on the target implied volatility for 𝐼𝑗,𝑘). The result is the multi-period 

analogue of the two-moment order fitting approach set out in Section 2.10. 
 
3.7 More accurate, however, is to use a targeted quantile-spacing approach as described in 

Section 2. For vanilla European-style options, the improvement available will mirror 
whatever we would have seen in Section 2 had we used the same cumulative returns for the 
period from 𝑡 = 0 to 𝑡 = 𝑇. For other types of option, similar run-time gains are also 
possible, provided the procedure is adapted to cater for any path-dependent characteristics 
they might exhibit, see Section 4.23. 

 
Adding a (non-constant) term structure of implied volatility 
 
3.8 In the fitting approach described above, the sampled distributional form for 𝐼𝑗,𝑘 (where 𝑗 

indexes the time period) is fitted to its assumed ‘true’ distributional form. The distributional 
parameters don’t need to be constant through time. The approach can therefore easily cater 
for implied volatilities measured as at 𝑡 = 0 that are not constant over time, i.e. vary with 
respect to 𝑇. Implied volatilities on e.g. equities typically exhibit such a term structure, so it 
is convenient to include such a feature in a fair (i.e. market consistent) valuation if this term 
structure is readily observable for the asset class in question. 

 
Adding a (non-constant) strike structure of implied volatility 
 
3.9 Market prices of options often also include a (non-constant) strike structure for implied 

volatility, i.e. different implied volatilities apply to options of the same term but different 
strikes. In other words, implied volatility has a two-dimensional surface, dependent on term 
and strike level simultaneously. 

 
3.10 For long-dated guarantees, it may be difficult to identify observables that can reliably guide 

assumptions about the shape of the option term-strike structure, particularly its strike 
dependency. Moreover, for funds containing a mix of assets, what we are really interested in 
is the corresponding structure for the whole fund, not for its individual elements. 
Diversification both across asset classes and across time may reduce the tendency for 
(market implied) fat-tailed behaviour and hence option skews to be exhibited by the overall 
fund. 

 
3.11 However, it will sometimes be important to include such effects, particularly for more 

sophisticated clients or for derivatives with shorter maturities. If suitable market 

                                                           
17 By ‘strike structure’ we mean how implied volatility varies according to the strike price of the option being 
priced. A constant strike structure is here interpreted as meaning that the same implied volatility is applicable 
whatever the strike price. 
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observables can be found to inform the selection of market implied distributions, the 
targeted quantile-spacing approach described above can be adapted as follows to 
accommodate such market dynamics:  

  
(a) A market implied risk neutral distribution for the rolled-up index at time 𝑇 is found that 

is consistent with market observables (and any expert judgement superimposed on the 
market observables). 

(b) This distribution is used instead of the one that arises from a flat strike structure in 
Sections 3.5 – 3.6. Thereafter the algorithm is the same, i.e. we create a larger base 
simulation set, which we collate into a smaller number of collated simulations that 
suitably average the base simulations within given quantile ranges, the quantile ranges 
and their weights being chosen to best handle non-smooth elements in the underlying 
instrument payoffs.  

 
3.12 In practice, this requires the selection of a suitable distributional form from which the 

distribution in (a) is selected, the fitting of this distributional form to market observables and 
then sampling from the selected distribution. All are potentially facilitated by using suitable 
statistical function libraries18 or mathematical packages with similar functionality. 

 
3.13 However, usually packages favour selecting suitable distributional parameters using e.g. 

maximum likelihood or other similar fitting criteria, whereas we would ideally like fitting 
methods that directly target fits of prices of instruments that we can observe in practice. 
Given the limited availability of market observables, it is also typically necessary to include 
views on how the distribution behaves beyond regions isolatable from readily available 
market observables. Distributional fitting and sampling from more complex distributions is 
also quite complicated and typically quite slow, making it more complex and time consuming 
to create a large base simulation set. It may then be necessary to limit the size of the base 
simulation set and hence the effective level of accuracy capturable by using a collated 
version of it.  

 
 
4. Multiple asset classes, rebalancing and management actions 
 
4.1 In practice, the funds to which guarantees in the example described in Section 2 may apply 

will not necessarily invest in a single asset class. Instead, they may invest in a range of assets. 
It then becomes important for the simulations to be coherent across asset classes, which in 
general requires us to simulate jointly the returns on multiple asset classes simultaneously. 
We can conceptually distinguish between two ways in which the asset class mix within a 
fund may change through time. These are: 

 
(a) Freely drifting asset class mixes. In this case, the fund starts with a specified asset mix at 

𝑡 = 0 and any returns on individual asset classes are reinvested exclusively in the same 
asset class from which they derive. 

(b) All other situations, including ones where asset class mixes are regularly rebalanced back 
to some specified asset mix and/or management actions are assumed to apply that will 
result in the target asset mix being changed in specified circumstances (e.g. the amount 
in a given asset class may be reduced if its market level falls too far relative to other 
asset classes within the portfolio). In practice, management actions can involve a 
decision tree, with second or subsequent management actions getting triggered in some 
circumstances. 

                                                           
18 E.g. the probability distributions component of the Nematrian function library, see Nematrian (2019e). 
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4.2 We explore below the refinements that may be needed to address both (a) and (b), as well 

as ways in which correlations between asset classes might be incorporated in the valuation 
framework. Certain steps need to be followed to adhere to the interpolation formulation but 
once these are addressed the inclusion of the targeted quantile-spacing approach into the 
simulation exercise is straightforward. 

 
Freely drifting asset mixes 
 
4.3 The simplest case is if the asset class mix within the fund drifts as markets move, with 

returns on individual asset classes being exclusively reinvested into the asset class from 
which they derive. The return19 on the overall fund over the period from 𝑡 = 0 to 𝑡 = 𝑇 is 
then an exact weighted average of the returns on each asset class in isolation, the weights 
being the opening weights of the fund at time 𝑡 = 0. If we therefore construct simulations 
for each asset class in the manner described in Section 3 (and include at least a first order 
moment fitting approach when doing so) then the simulation average for each asset class in 
isolation will be aligned to the target risk-neutral rolled-up fund return for the combined 
period. As this target is the same for all asset classes, the average across simulations for the 
whole fund will also align with this same target return. 

 
Coping with correlations 
 
4.4 However, even when asset classes are freely drifting without rebalancing or other 

management actions, we still need to arrange for the individual asset classes to co-move in 
some suitable fashion. 

 
4.5 The simplest way of measuring co-movement is to use correlation coefficients (or, largely 

equivalently from our perspective, to use covariances). Typically, we might then specify the 
correlations between asset classes as well as the variances / standard deviations of the 
relevant asset class returns. The task then becomes identifying a way in which simulations of 
returns on individual assets can be jointly selected whilst exhibiting the desired correlations. 

 
4.6 This is typically achieved using a Cholesky decomposition20. This in effect involves identifying 

a lower diagonal matrix 𝐿 with non-negative diagonal elements which when applied to a 
vector 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇 of 𝑛 independent identically distributed zero mean unit normal 
random variables (so 𝑥~𝑁(0, 𝐼) where 𝐼 is the identity matrix) results in a vector 𝑦 = 𝐿𝑥 =
(𝑦1, … , 𝑦𝑛)𝑇 which is distributed according to 𝑦~𝑁(0, 𝐴) where 𝐴 is the desired covariance 
matrix that we wish the variables to exhibit. If 𝐴 has real entries, is symmetric and is positive 
definite then it can be decomposed as 𝐴 = 𝐿𝐿𝑇, where 𝐿𝑇 is the transpose of 𝐿. The entries 
of 𝐿 are: 

 

𝐿𝑗,𝑗 = √𝐴𝑗,𝑗 − ∑ 𝐿𝑗,𝑘
2

𝑗−1

𝑘=1

                     𝐿𝑖,𝑗 =
1

𝐿𝑗,𝑗
(𝐴𝑖,𝑗 − ∑ 𝐿𝑖,𝑘𝐿𝑗,𝑘

𝑗−1

𝑘=1

)    𝑓𝑜𝑟 𝑖 > 𝑗 

 
4.7 However, from our perspective there is a wrinkle. We ideally want to fit at least the first two 

moments of the joint distribution, i.e. here to arrange for the sample mean and sample 

                                                           
19 I.e. the amount that an investment of 1 in a given currency at time 𝑡 = 0 would reach in that currency at 
time 𝑡 = 𝑇. 
20 See e.g. Nematrian (2019f). 
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covariance matrix to (exactly) match the targeted means and covariances. It is relatively easy 
to get the means to align by shifting the simulations, i.e. if the simulations for the 𝑖’th asset 
class are 𝑥𝑖,𝑘 then work out the sample mean as 𝑚𝑖 = ∑ 𝑥𝑖,𝑘𝑘  and if the target mean is 𝑀𝑖 
replace each 𝑥𝑖,𝑘by 𝑥𝑖,𝑘

𝑛𝑒𝑤 = 𝑥𝑖,𝑘 + 𝑀𝑖 − 𝑚𝑖. However, it is not so obvious how to get the 

covariances all to align exactly. 
 
4.8 One solution is to carry out a principal components analysis (PCA)21 of the original 

simulations, i.e. from the original sets of 𝑥𝑖,𝑘 for each of the 𝑛 different asset classes derive 
new sets 𝑧𝑖,𝑘 corresponding to the principal components of the 𝑥𝑖,𝑘 and then to rescale the 
𝑧𝑖,𝑘 so that for each 𝑖 they have exactly unit variance. PCA is typically applied to correlated 
data series, the aim being to find factors that explain as much as possible of the variation 
arising in the data. It returns a set of orthogonal (i.e. uncorrelated) data series, the first 
principal component explaining the highest amount of the variation in the original data 
series, the second principal component the next highest etc. We are not here interested in 
identifying the fraction of variation explained by each principal component (which we expect 
to be relatively similar for all identified principal components given that the data is a sample 
from independent identically distributed variables). We are more interested in the ability of 
PCA to provide data series that are exactly orthogonal. 

 
4.9 Another solution is to use pseudo-random (also called sub-random) series, e.g. Halton 

sequences22. These are, in some suitable sense, designed to sample as uniformly as possible 
the multi-dimensional space spanned by the relevant input series. They typically don’t 
provide as accurate a second order fit as a PCA based approach but may provide a smoother 
fit depending on the asset mix in question23. 

 
4.10 However, both approaches described above struggle to cater in general for all possible ways 

in which returns might be related (either with each other or with themselves through time). 
We typically won’t have enough free variables available to get accurate fits to all possible 
ways in which correlations between different asset classes and between different time 
periods might be set. Also, we may have rejected the use of correlations and decided to use 
more complicated ways of characterising co-dependencies between asset classes such as 
copulas24. There are typically no simple ways of establishing the equivalent of exactly 
uncorrelated simulation series with such approaches. 

 
4.11 In contrast, underlying the targeted quantile-spacing approach is some model which is 

assumed to have some appropriate coherent approach to the relevant co-dependencies. The 
large number of simulations used in the base simulation set allows the simulation set to 
achieve a good fit to this underlying model, which in a suitable sense is then ‘inherited’ by 
the collated data set, see Section 2.24. 

 
Adding rebalancing and/or other management actions 
 

                                                           
21 See e.g. Nematrian (2019g). 
22 See e.g. Nematrian (2019h). 
23 Results of using such approaches are often not as good as researchers expect given the apparently very 
helpful features they should exhibit. This appears at least in part to be because to get maximum benefit from 
the sub-randomness these sequences exhibit you need to have the axes being used by the sub-random 
sequences to align with axes that are meaningful in the context of the problem at hand. As the asset mix that 
might be applicable is arbitrary, it is essentially impossible to ensure that this alignment applies for all asset 
mixes simultaneously.  
24 See e.g. Nematrian (2019i). 
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4.12 Any modelling of rebalancing / management actions needs to codify the asset mix changes 
involved by such actions. 

 
4.12 Once codified, the inclusion of rebalancing and/or other management actions might be 

expected to be conceptually straightforward. For any individual simulation we might expect 
to be able to derive the overall fund return in any individual time step by calculating the 
appropriate weighted average of the returns on different asset classes in that simulation for 
that time step, the weights being as per the codification described above. 

 
4.13 However, if we follow such an approach without modification, we find that the fund’s 

cumulative return averaged across different simulations gradually diverges in a risk-neutral 
world from the corresponding individual asset class cumulative returns. As time progresses, 
the average cumulative return for the fund across all simulations typically diverges further 
and further away from its targeted risk-neutral value. Eventually, the averaged cumulative 
return can become quite out of line with the corresponding target risk-neutral cumulative 
return. The divergence typically grows more quickly the larger the amount of asset 
reallocation involved relative to the freely drifting situation described previously. 

 
4.14 This is a problem, because it means that the simulated fund returns created purely as above 

will not be martingales and will no longer therefore respect the Principle of No Arbitrage. 
One way of interpreting the effect is to note that inclusion of such rebalancing or other 
management actions is akin to the carrying out of some form of dynamic hedging that might 
otherwise be used to hedge some form of option. However, such dynamic hedging typically 
needs to be done instantaneously, whereas in the above approach it only happens at finite 
time steps. The corresponding option-like component (and how the instantaneous hedging 
theoretically needed diverges from the finite time step hedging modelled as above) is 
however being ignored when we derive the simulated fund simply as above. More formally, 
a strategy that includes rebalancing and/or other management actions has in effect a non-
zero option gamma and thus contributes an additional drift term to the behaviour of the 
fund, which is ignored if we merely use the approach described in Section 4.12. In practice 
we can only avoid the divergence (without some adjustment to fund-level returns) by 
adopting a strategy that has zero option gamma (i.e. by adopting the freely drifting situation 
described earlier).  

 
Enforcing the martingale criterion 
 
4.15 The potential for such a problem to arise is typically tested for within a risk-neutral valuation 

exercise by applying a martingale test. Typically, this is understood to involve the 
identification of a suitable test statistic based on the movement in the present value of the 
rolled up index value (or this index value conditioned on some other variable) and rejecting 
the assumption that the modelled index series forms a martingale if the relevant weighted 
average (across the simulation set) of this movement diverges too far (statistically) from 
zero. 

 
4.16 In the interpolation formulation, the martingale test is automatically enforced for individual 

asset categories, provided at least a first order moment fitting approach has been included. 
The sample cumulative return is then forced via the fitting process to align exactly with its 
desired theoretical value. The corresponding martingale test statistic should then be zero. At 
issue is that merely enforcing this for individual asset categories in isolation does not ensure 
that it is also satisfied for combinations of asset categories, if the fund does not just allow 
the asset mix to drift freely as above. 
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4.17 The solution is to include for each fund a further step that enforces the martingale property 

for that fund, by applying a further first order moment fitting to each fund’s simulated 
cumulative returns. This typically involves adding to all simulations for a given fund and time 
step a (constant across simulations) term that aligns the sample averaged cumulative return 
for that fund with the targeted risk-neutral cumulative return. 

 
4.18 Although not strictly accurate, such an adjustment can typically be thought of as akin to 

some uncertainty in how and when within the relevant time step the asset reallocation 
needed might take place. 

 
Other issues relating to non-infinitesimal time steps 
  
4.19 For funds that are merely rebalanced back to fixed asset weights the drift adjustment 

required as per 4.17 is typically quite small for individual time steps and reduces in size as 
the time step being used reduces. Of course, the shorter the time step, the longer the 
valuation run-time (as calculations are needed at each time step for each instrument or 
instrument grouping included in the computation). Some suitable compromise is likely to be 
needed between shorter time steps and more precise rebalancing25. 

 
4.20 Other forms of management actions may involve larger step changes to asset allocations if 

some trigger occurs. An issue then becomes how quickly management would in practice 
react to such triggers. In theory, we might aim to have the time step size aligned with the 
speed at which the management action might be implemented, but this might result in 
excessively small step sizes. In practice, refinements may be included in the time step 
projection to capture the impact of intra-period movements. Similar issues arise with barrier 
options (and with many other types of path-dependent options). 

 
4.21 A problem that can in principle arise if the step size is too long (and if the fund is quite 

volatile and overall projection period is too long) is that the across-simulation adjustments 
needed in 4.17 can be too large to keep the simulated index values non-negative in all 
circumstances. Two possible solutions are: 

 
(a) Apply a suitable lower bound on any given simulated fund index value, in which case the 

overall average return to the end of that period will be a little inflated but likely corrects 
itself relatively soon afterwards 

(b) Apply the required correction only to some (typically higher return) simulations, which 
can allow us to keep the average correct but might possibly create some bias in the 
volatility. 

 
Applying the targeted quantile-spaced approach 
 
4.22 However, no fundamental refinement is in principle needed to apply the targeted quantile 

approach once some suitable solution has been found in a more traditional simulation 
framework to address issue such as those noted in Sections 4.15 to 4.21. It again involves 
preparing a larger base simulation set using whatever model we have identified is 
appropriate for the derivative instrument type in question and creating a smaller collated set 
from this larger set as described previously. 

 

                                                           
25 We’ve also here assumed that rebalancing happens effectively instantaneously, whereas in practice it may 
merely happen say weekly, monthly, quarterly or even less frequently. 
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Nested simulations 
 
4.23 Run-times when valuing and analysing derivative books can become particularly large using 

traditional Monte Carlo techniques if the valuation requires nested simulations. These can 
arise in a variety of situations including: 

 
(a) Exercises where we are projecting forward the book on a non-market consistent basis 

but need then to value the book at one or more future points in time on a market 
consistent basis 

(b) Options that are path-dependent, e.g. American-style, barrier, lookback or other path-
dependent options. 

 
4.24 For example, suppose we wish to evaluate the one year expected shortfall or tail value-at-

risk of a book of derivatives. This would involve evaluating the (market consistent) value of 
the book in one years’ time in a variety of (adverse) situations, and then averaging 
(integrating) over the probabilities of occurrence of these situations happening. 

 
Likewise, to identify the value of an American-style option we in theory need to identify 
whether at a given point in the projection it is then optimal to exercise the option, which in 
principle requires valuing the option at points in time further into the future assuming that 
exercise is deferred, to see if the option is then worth exercising.  

 
Sometimes there can be more than two nesting levels, e.g. if we want to calculate an 
expected shortfall of a book that includes path-dependent options. 

 
4.25 The targeted quantile-spacing algorithm again offers the potential for significant run-time 

improvements for such exercises. For example, suppose we need to calculate the one-year 
expected shortfall of a derivative book consisting of European-style options on one or more 
underlyings. We would prepare a large base simulation set that captured simulations of the 
underlyings. We would first sub-divide this base set into sub-base sets that are conditional 
on (i.e. group together cases where) the underlyings (jointly) reach specific levels in one 
year’s time. We would then create collated sets from each of these sub-base sets, and 
potentially further collate down these sets (which would differ according to the levels the 
underlyings had reached in one year’s time) into a smaller number of collated sets that best 
characterised a smoother progression of levels reached then. The collated simulation set 
data would typically be more complicated than in the non-nested case26, but the potential 
run-time efficiency gains would likely be larger (versus the traditional Monte Carlo 
approach) given the extra complexity of the problem being analysed. The precise form of the 
problem would typically influence exactly how the collation was best done. For example, the 
most important contributions to an expected shortfall calculation tend to come from large 
up or down movements in one or more of the underlyings, so the collation might 
preferentially target ability to value these scenarios appropriately by including greater 
numbers of simulation points in the relevant extremities of the simulation distribution (with 
appropriately adjusted probabilities of occurrence). 

 
 
5. Further comments on use within the financial sector 
 

                                                           
26 For example, if evolution of interest rates is not independent of evolution of the underlying(s) then we 
would also need to capture stochastic forward discount rates (i.e. simulated one-year forward zero-coupon 
bond prices) so that we could value instruments appropriately at the one-year valuation point. 
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5.1 In absolute terms, the run-time and hence cost benefits of the targeted quantile-spacing 
approach and the interpolation formulation on which it builds offer are likely to be larger for 
bigger entities with more complex valuation requirements. However, the approach appears 
to have broad applicability and is reasonably simple to implement whenever a more 
traditional simulation-based technique could otherwise be applied. It should therefore also 
offer run-time and cost benefits even to smaller entities. 

 
5.2 For reasons explained in Kemp (2009), it seems likely that there will be a continuing 

regulatory desire to expand the use of fair (i.e. market consistent) valuations in some 
financial sectors. For example, the European Insurance and Occupational Pensions Authority 
(EIOPA) is currently encouraging EU pension funds (also called institutions for occupational 
retirement provision or IORPs) to apply a ‘common assessment framework’ to their 
liabilities, e.g. via its specification in EIOPA mandated industry-wide stress tests. This 
framework targets market consistency and therefore expects IORPs to use appropriate 
techniques to value option-like exposures that may be present within their balance sheets. 
The liability structures of many defined benefit (‘DB’) pension funds include option-like 
components27. Option-like components can also arise from the benefit security mechanisms 
prevalent for such entities28. An approach such as the targeted quantile-spacing approach 
that makes it more practical to determine such values to a suitable level of accuracy may 
therefore be appealing to entities and regulators in sectors where such regulatory pressures 
are present, provided the  exposures involved are complicated enough to require valuation 
using simulation techniques. 

 
5.3 We have concentrated above mainly on straightforward underlyings. The targeted quantile-

spacing approach can also be used to price more complicated underlyings, e.g. payoffs that 
depend on an aggregate underlying that is the greater of (or some other combination of) 
multiple other underlyings with or without floors or ceilings. However, the more complex 
the underlying the fewer instruments there are likely to be in the book that depend on it. 

 
5.5 It is not necessary to use the targeted quantile-spacing approach only when there are 

multiple instruments sharing the same underlying, although this does increase the run-time 
gains the approach offers. Whether an overall run-time gain arises if we are applying the 
approach to, say, just a single instrument will depend on the run-time per simulation 
required for the instrument versus the run-time required to create and then collate a set of 
simulations together29. 

 
5.5 We might also use different 𝐵’s (i.e. ratios of sizes of base to collated simulation sets) and/or 

different levels of algorithm segmentation / interpolation order (as per Sections 2.32 – 2.36) 

                                                           
27 E.g. pensions in payment may be subject to increases linked to inflation but these increases may be subject 
to annual or multi-year ceilings and floors. 
28 For example, some DB pension funds have conditional benefit structures, where benefit payments can be 
reduced if markets perform poorly. These can be modelled as akin to ‘management actions’ as per Section 4. 
Others may rely on sponsor support should their assets perform poorly. To quantify the market consistent 
value of this sponsor support we may therefore need to identify how much support might be called upon in 
adverse circumstances and then to incorporate an allowance for the credit risk that the sponsor might not be 
able to afford to provide the support when needed. Pension funds with a weak or non-existent sponsor 
covenant may also be protected by national pension protection schemes but these may not guarantee the 
whole of the applicable pension benefits, again introducing some option-like elements into the liability 
valuation, or at least into how the valuation might be split between different component parts 
29 Even if there is no such run-time gain for a specific instrument type, we might still benefit from applying the 
technique, e.g. if the nature of the book is not well analysed in advance but we expect that in most cases the 
approach will lead to efficiency gains. 
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for different parts of the book (or different elements of a nested simulation exercise), 
depending on where it is expected to be most beneficial to target run-time efficiencies. 

 
5.6 We have not so far discussed in detail what any valuations derived as per earlier parts of this 

paper might be used for. One motivation for preparing such valuations is to assist in the 
making of decisions on how best to manage the (market or other) risks encapsulated in the 
relevant book of derivatives. In this context, calculations that aim to establish the sensitivity 
of the valuation to changes in input parameters (e.g. here prices of the underlying, implied 
volatilities, …) can be particularly run-time intensive, because a common way of calculating 
such sensitivities30 is to repeatedly re-run the analysis incorporating small change to the 
inputs. Such exercises are amenable to algorithmic differentiation techniques, but only 
typically if the original problem can be solved analytically (which can then allow derivation of 
analytical expressions for the relevant partial derivatives). Firms wanting to actively manage 
such exposures may also want to estimate these sensitivities or carry out other stress and 
scenario simulations relatively frequently, increasing the incentive towards run-time 
efficient valuation methodologies. 

 
6. Broader applicability 
 
6.1 The main novel approach introduced in this paper is the targeted quantile-spacing approach 

(together with refinements as set out in Sections 2.32 – 2.36 that can further enhance its 
run-time properties). We have so far in this paper concentrated on how this approach can 
be applied in the financial arena, particularly to derivative pricing problems and related 
exercises. 

 
6.2 However, provided a problem is amenable in the first place to more traditional simulation-

based numerical integration techniques, it should also be amenable to the use of 
enhancements like the targeted quantile-spacing approach and its refinements. Whenever 
run-time is a constraint and can be improved upon by the targeted quantile-spacing 
approach, it should potentially offer meaningful benefits. This means that it should be 
applicable to many problems outside the derivative pricing (or even finance) arena that 
might otherwise be addressed using more traditional simulation-based techniques including 
ones that in effect involve numerical integration. 

 
6.3 Integration techniques (including numerical integration techniques) are used in a very 

diverse range of engineering and physical sciences fields, from areas such as estimation of 
protein folding characteristics to artificial intelligence algorithms, automotive and other 
engineering control processes and climate change modelling. A link that motivates many of 
these applications is the close association between optimisation and integration of some 
suitable control function characterising the optimisation problem. Solutions to differential 
equations can often be expressed as integrals and therefore numerical approaches to solving 
them can also share similar characteristics.  

 
6.4 Consider, for example, an engineering control process that involves a physical system 

containing the following elements. The overall structure we articulate below is generic and 
characterises many different control processes in many different fields. In brackets we have 
included what the elements might look like in a specific example drawn from aeronautics in 
which the system involves an aircraft wing and the aim is e.g. to avoid excessive vibration, 
where ‘excessive’ is defined in some manner that here might be relatively granular (as we 

                                                           
30 For options or books of options, these sensitivities are often called the option ‘greeks’. 
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might here want to avoid excessive vibration anywhere in the wing and not just for the wing 
as a whole) or to further some other engineering goal for the system: 

 
(a) One or more sensors measuring the state of the system at one or more points (in space, 

e.g. pressures or other physically relevant measures at different points along the wing 
surface, or in time, e.g. the level of vibration at recent past time points, or both) 

(b) Features of the system on which higher or lower utility values can be placed (e.g. extent 
of vibration of specific parts of the wing, where a penalty could be imposed for higher 
vibration there linked to the impairment of the air-flow dynamics across the wing, the 
fuel inefficiency it might lead to or the level of passenger discomfort it might cause) 

(c) One or more control processes (implemented in hardware, software or both) that 
interpret the outputs of the sensor(s) in (a) and select appropriate actions bearing in 
mind the utility values specified to outcomes in (b) 

(d) One or more actuators and/or warning indicators driven by the process(es) in (c), that 
either alter the system being controlled (e.g. alter the speed of the aircraft or alter 
configurable elements of the wing surface) or that flag up the need for some other 
remediation action by a system controller. 

 
6.5 We might in the control process (i.e. step (c)) seek to simulate how the system might evolve 

in the future conditional on the current and recent past sensor readings as per (a), placing 
different utilities on different states of the system as per (b) with the control outputs from 
step (c) being used either to automatically apply actions as in step (d) that aim to target 
some suitable overall outcome for the system, or that indicate to a system (e.g. human) 
controller that some reaction may be desirable. Suppose the control process needs to 
operate rapidly (e.g. in real-time) and suppose any simulations it uses are reasonably 
complex to process (as might be the case here if the aim is to simulate how the airflow 
across the wing might evolve within the time it might take for any control action to make a 
difference). A premium may then be placed on simulation approaches that are relatively 
rapid as well as relatively accurate. 

 
6.6 Such a characterisation directly parallels the derivative pricing problem we have described in 

Sections 2-4. The sensor readings in (a) can be viewed as analogous to the prices of the 
underlyings (and other market observables) since they provide the opening values to be fed 
into the simulations of how elements of the system might then evolve. The elements of the 
system that influence contributions to utility can be viewed as analogous to individual 
derivative payoffs. The overall utility is analogous to the valuation of the whole book of 
derivatives. If rapid accurate estimation of the overall change in utility arising from different 
possible control responses is helpful, and if modelling of the evolution of factors influencing 
this utility requires or benefits from simulation-based techniques then use of an approach 
like the proposed targeted quantile-spacing approach that is faster than more traditional 
simulation approaches becomes appealing. 

 
6.7 However, there is a wrinkle within the characterisation given in Section 6.6. This is the 

implicit assumption that practical process control approaches will often include simulation 
elements. Many more sophisticated practical process control approaches currently adopt 
the model predictive control (MPC31) formalism (or simpler equivalents), but often only 
classical (deterministic) types of MPC. The MPC formalism has been used in e.g. chemical 
plants and oil refineries since the 1980’s and more recently has been extended to e.g. power 
system management and power electronics. The classical MPC formalism involves or 

                                                           
31 Also known as ‘receding-horizon control’, given the finite number of past state measurements incorporated 
at any given point in time in the control process.  
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embeds control algorithms that identify in a deterministic manner target changes to make to 
specific variables (e.g. pressure, flow, temperature) in order to return some output to close 
to its target (usually whilst also respecting applicable constraints on some variables e.g. that 
pressures should not exceed specified critical levels)32. 

 
6.8 Traditional (classical) MPC approaches (and simpler variants) are effectively deterministic in 

nature, i.e. the control output is essentially deterministically derived from the inputs. 
Implicit in such approaches is the assumption that the system dynamics can be adequately 
modelled deterministically. Use of simulation techniques then gets focused on the design 
stage, i.e. the specification of the structure and characteristics of the process control, rather 
than in its live running. Often the MPC is linear (possibly with the inputs being transformed 
in a manner that converts the problem into a linear one), as it can then usually be 
conveniently codified using matrix algebra. The feedback mechanism within the MPC is 
implicitly assumed to compensate adequately for structural mismatches between the model 
and the process being modelled. 

 
6.9 The deterministic modelling of a physical system in the manner implicit in a classical MPC 

can in the context of this paper be thought of as analogous to trying price a derivative using 
merely a single deterministic projection of how the underlying might move in the future. For 
some derivatives, namely linear ones like futures and forwards, a correct price can be 
obtained using a deterministic approach. However, for non-linear derivatives such as 
options, the output of a deterministic model can be quite misleading and a stochastic 
approach (or some analytical equivalent as per Section 1.7) is preferable. 

 
6.10 The need to include randomness in the modelling process is perhaps particularly evident in 

the derivatives field, given the existence of clearly random contributions to the future 
evolution of asset prices and the underlying rationale for many derivative transactions, 
which often involve players wanting to manage or hedge exposures to risks arising from this 
randomness. It is maybe not quite so evident in the engineering process control field, at 
least within the paradigm underlying (deterministic) MPCs, which implicitly assumes a 
deterministic nature to the system of which the MPC is a part.  

 
6.11 Some modern engineering process control techniques do explicitly recognise that the 

systems concerned do not evolve in purely deterministic ways, that randomness is an 
inherent feature of the real world and that in any case errors may exist in any state 
measurements being inputted into the applicable control processes. Mesbah (2016) 
highlights the exceptional performance of MPC for high-performance control of complex 
systems but also highlights its inadequacies for systematically dealing with such 
uncertainties. He highlights the development in recent years of stochastic optimal control 
techniques and focuses on stochastic model predictive control (SMPC) which has the aim of 
systemically incorporating the probabilistic descriptions of uncertainties into a stochastic 
control problem. He notes that the ability to regulate the probability distribution of system 
states/outputs is important for the safe and economic operation of complex systems when 
the control cost function is asymmetric. His paper includes references describing prior 
applications of SMPC (both linear and non-linear) to at least the following fields: air traffic 
control, automotive applications, building climate control, microgrids, networked control 

                                                           
32 Formulated in this generalised manner, most other simpler control processes can be viewed as special cases 
of a MPC, including e.g. a proportional-integral-derivative (PID) control which continuously calculates an error 
between the desired setpoint for a given process variable and its current measured value and applies a 
correction based on proportional, integral and derivative terms (but often without placing practical constraints 
on the size of the resulting target control adjustment). 
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systems, operation research and finance, process control, robot and vehicle path planning, 
telecommunication network control and wind turbine control. He argues that SMPC allows 
for the systemic trade-off between fulfilling control objectives and guaranteeing a 
probabilistic constraint satisfaction due to uncertainty. 

 
6.12 A key challenge Mesbah (2016) notes that currently constrains the use of SMPC in non-linear 

systems is the efficient propagation of stochastic uncertainties through the system 
dynamics. The analogous challenge when pricing non-linear derivatives is the efficient 
propagation of the impact of stochastic uncertainty in future asset price movements to the 
end valuation result (and hence to the sensitivity of this result to adjustments such as 
hedging strategies that we might want to introduce into the derivative book). This is 
precisely the challenge that earlier parts of this paper have sought to address. Incorporation 
of run-time efficient simulation approaches such as the targeted quantile-spacing approach 
described in this paper (perhaps particularly if refined as in Sections 2.32 to 2.36 for a 
control process that is used continuously in real-time) therefore potentially make application 
of SMPC or other stochastic optimal control approaches more practical and beneficial in a 
wide range of fields, including ones already noted in Section 6.11. 

 
6.13 Not all SMPC techniques make use of simulation-based approaches. For example, Garifi et al. 

(2018) explore the use of SMPC for demand response management in a home energy 
management system. They propose use of chance constrained MPC-based optimisation, in 
part, it seems, because they consider that the use of Monte Carlo sampling for representing 
uncertainties in various parameters such as outdoor temperature and renewable energy 
source generation would be computationally restrictive. This suggests that approaches such 
as those described earlier in this paper that mitigate these computational challenges will 
likely also make simulation-based approaches more applicable in such fields. Such a 
development would mirror experience in the finance field, where increased availability of 
computing resource has seen increased use of simulation-based approaches including in 
areas where previously such approaches would have been considered impractical. 
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Appendix A: Analytical option pricing formulae 
 
Examples of analytical option pricing formulae include the Black-Scholes (technically the Garman-
Kohlhagen) formulae for put (𝑃) and call (𝐶) options: 
 

𝑃 = −𝑆𝑒−𝑞𝑇𝑁(−𝑑1) + 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) 
𝐶 = 𝑆𝑒−𝑞𝑇𝑁(𝑑1) − 𝐾𝑒−𝑟𝑇𝑁(𝑑2) 

 
where: 
𝑇 = time to maturity 
𝑆 = price of underlying 
𝐾 = strike price 
𝑞 = dividend rate on underlying (continuously compounded) 
𝑟 = interest rate on a risk-free ZCB expiring at time 𝑇 (continuously compounded) 
𝜎 = implied volatility (annualised) of underlying (relative to a ZCB expiring at time 𝑇, as this is the 
instrument that in conjunction with the underlying needs to be used to hedge the option) 
𝑁(𝑥) = cumulative unit normal distribution function 
and: 

𝑑1 =
log(𝑆 𝐾⁄ ) + (𝑟 − 𝑞 +

𝜎2

2 ) 𝑇

𝜎√𝑇
    𝑎𝑛𝑑    𝑑2 =

log(𝑆 𝐾⁄ ) + (𝑟 − 𝑞 −
𝜎2

2 ) 𝑇

𝜎√𝑇
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