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The term accelerated convergence appears in a number of different guises in mathematics and 
finance. 
 
1. In the context of numerical integration (also called quadrature), accelerated convergence 
can relate to approaches that aim to converge more rapidly to the correct answer as the number of 
evaluations, 𝑛, of the underlying function increases. 
 
Perhaps the most important example is what is more classically known as Simpson’s rule. The theory 
can be developed as follows. The simplest and perhaps most obvious way of evaluating an integral 

numerically is the so-called trapezoidal rule. Suppose we are trying to evaluate ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 and the 

abscissas (i.e. the points at which the function is evaluated) are equally spaced, say at 𝑥𝑖 = 𝑥0 + 𝑖ℎ 
for 𝑖 = 0,1, … ,𝑁 (so 𝑥0 = 𝑎 and ℎ = (𝑏 − 𝑎) 𝑁⁄ ), with the values of 𝑓(𝑥) there being 𝑓𝑖 ≡ 𝑓(𝑥𝑖). 
The trapezoidal rule involves approximating the integral by the following formula: 
 

∫ 𝑓(𝑥)𝑑𝑥

𝑥𝑖+1

𝑥𝑖

≈ ℎ [
1

2
𝑓𝑖 +

1

2
𝑓𝑖+1] 

 
The accuracy of this approximation can be expressed as follows: 
 

∫ 𝑓(𝑥)𝑑𝑥

𝑥𝑖+1

𝑥𝑖

= ℎ [
1

2
𝑓𝑖 +

1

2
𝑓𝑖+1] + 𝑂(ℎ3𝑓′′) 

 
By 𝑂(ℎ3𝑓′′) we mean that the true answer differs from the estimate by an amount that is the 
product of some numerical coefficient times ℎ3 times the value of the second derivative of the 
function somewhere in the interval of the integration (assuming that the function is sufficiently 
smooth and actually has a second derivative). 
 
Repeated application of the above over each of the  𝑁 parts of the overall integration results in the 
extended trapezoidal rule, namely: 
 

∫ 𝑓(𝑥)𝑑𝑥

𝑥𝑁

𝑥0

= ∑ ℎ [
1

2
𝑓𝑖 +

1

2
𝑓𝑖+1]

𝑁−1

𝑖=0

+ 𝑂(
(𝑏 − 𝑎)3𝑓′′

𝑁2 ) 

=
1

2
𝑓0 + 𝑓1 +⋯+ 𝑓𝑁−1 +

1

2
𝑓𝑁 + 𝑂(

(𝑏 − 𝑎)3𝑓′′

𝑁2 ) 

 
Here we have written the error estimate in terms of the overall interval size 𝑏 − 𝑎 and 𝑁 rather than 
ℎ as usually 𝑏 − 𝑎 will be fixed and 𝑁 varied to achieve a desired level of accuracy. This highlights 
that the accuracy of the trapezoidal rule improves by a factor of 𝑁2 as 𝑁 increases (if the function 
being integrated is sufficiently smooth). 
 
The trapezoidal rule is a two point formula (in the sense that each underlying interval involves just 
two points, 𝑥𝑖 and 𝑥𝑖+1) and is exact for polynomials up to and including degree 1, i.e. 𝑓(𝑥) = 𝑎0 +
𝑎1𝑥 (i.e. straight lines). We might therefore expect that there is a three point formula that is exact 
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up to polynomials of degree two (i.e. quadratics). This is indeed the case, and it involves Simpson’s 

rule (here we use the convention that 𝑓(2) = 𝑓′′, 𝑓(3) = 𝑓′′′, 𝑓(4) = 𝑓′′′′ etc. 
 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2(𝑖+1)

𝑥2𝑖

= ℎ [
1

3
𝑓2𝑖 +

4

3
𝑓2𝑖+1 +

1

3
𝑓2𝑖+2] + 𝑂(ℎ5𝑓(4)) 

 
Classically, a variety of other formulae were developed that fitted higher and higher order 
polynomials, e.g. Simpson’s 3/8 rule, Bode’s rule etc., but in practice the (extended) trapezoidal rule 
has some subtle but important facets which make it the starting point for many different numerical 
integration techniques, see e.g. Press et al. (2007). In particular, the error of the approximation 
which begins with a term of order 1 𝑁2⁄  is entirely even when expressed in powers of 1 𝑁⁄ . 
 
Suppose, therefore, that we evaluate the trapezoidal rule with 𝑁 steps (i.e. 𝑁 + 1 abcissae) and 
come up with an answer 𝑆𝑁. Suppose we repeat it with 2𝑁 steps (i.e. the  𝑁 + 1 abcissae previously 
used plus 𝑁 further ones equally spaced between them) and come up with an answer 𝑆2𝑁. Then, if 
the function is sufficiently smooth, the leading error term in the second evaluation will be one-
quarter of the size of the leading error in the first evaluation. We should therefore be able to test for 
convergence by repeatedly doubling the number of terms evaluated, and we should be able cancel 
out entirely the leading order error term using the combination: 
 

𝑆 =
4

3
𝑆2𝑁 −

1

3
𝑆𝑁 

 
The residual error term is of order 1 𝑁4⁄ , the same as Simpson’s rule; indeed it should not take long 
to realise that 𝑆 is exactly the same as Simpson’s rule. 
 
Various other refinements of this idea can be used to improve convergence further, e.g. Romberg 
integration. 
 
2. Alternatively, accelerated convergence can relate to other more general methods of 
improving the convergence properties of a series, i.e. where we approach the same end answer but 
with fewer evaluations of the series. 
 
For example, suppose we have two convergent series, say: 
 

𝑠 = ∑𝑎𝑘

∞

𝑘=0

 

 
and 
 

𝑐 = ∑ 𝑐𝑘

∞

𝑘=0

 

 
with the property that 
 

lim
𝑘→∞

𝑎𝑘
𝑐𝑘

= 𝜆 ≠ 0 
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Then Kummer’s transformation indicates that a series with a more rapid convergence to the same 
value is given by the following, see Abramowitz and Stegun (1972): 
 

𝑠 = 𝜆𝑐 +∑(1 − 𝜆
𝑐𝑘
𝑎𝑘
)𝑎𝑘

∞

𝑘=0

 

 
This becomes particularly helpful if 𝑐 is known already; useful cases include: 
 

∑
1

𝑛(𝑛 + 1)

∞

𝑛=1

= 1 

 
and more generally: 
 

∑
1

𝑛(𝑛 + 1) ∙∙∙ (𝑛 + 𝑝)

∞

𝑛=1

=
1

𝑝 ∙ 𝑝!
 

 
Other examples of convergence improvement are given in e.g. Weisstein (2015). 
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