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Suppose we knew for certain that between time 𝑡 − ℎ and 𝑡 the price of the underlying could move 
from 𝑆 to either 𝑆𝑢 or to 𝑆𝑑, where 𝑑 < 𝑢 (as in the diagram below), that cash (or more precisely 
the appropriate risk-free asset) invested over that period earns an interest rate (continuously 
compounded) of 𝑟 and that the underlying (here assumed to be an equity or an equity index) 
generates income, i.e. dividend yield, (continuously compounded) of 𝑞. 
 
 
Diagram illustrating single time-step binomial option pricing 

 
 
Suppose that we also have a derivative (or indeed any other sort of security) which (at time 𝑡) is 
worth 𝐴 = 𝑉(𝑆𝑢, 𝑡) if the share price has moved to 𝑆𝑢, and worth 𝐵 = 𝑉(𝑆𝑑, 𝑡) if it has moved to 
𝑆𝑑. 
 
Starting at 𝑆 at time 𝑡 − ℎ, we can (in the absence of transaction costs and in an arbitrage-free 
world) construct a hedge portfolio at time 𝑡 − ℎ that is guaranteed to have the same value as the 
derivative at time 𝑡 whichever outcome materialises.  We do this by investing (at time 𝑡 − ℎ) 𝑓𝑆 in 𝑓 
units of the underlying and investing 𝑔𝑆 in the risk-free security, where 𝑓 and 𝑔 satisfy the following 
two simultaneous equations: 
 

𝑓𝑆𝑢𝑒𝑞ℎ + 𝑔𝑆𝑒𝑟ℎ = 𝐴 = 𝑉(𝑆𝑢, 𝑡) 
𝑓𝑆𝑑𝑒𝑞ℎ + 𝑔𝑆𝑒𝑟ℎ = 𝐵 = 𝑉(𝑆𝑑, 𝑡) 

 
Hence: 
 

𝑓𝑆 = 𝑒−𝑞ℎ
𝑉(𝑆𝑢, 𝑡) − 𝑉(𝑆𝑑, 𝑡)

𝑢 − 𝑑
   𝑔𝑆 = 𝑒−𝑟ℎ

−𝑑𝑉(𝑆𝑢, 𝑡) + 𝑢𝑉(𝑠𝑑, 𝑡)

𝑢 − 𝑑
 

 
The value of the hedge portfolio and hence, by the principle of no arbitrage, the value of the 
derivative at time 𝑡 − ℎ can thus be derived by the following backward equation: 
 

𝑉(𝑆, 𝑡 − ℎ) = 𝑓𝑆 + 𝑔𝑆 =
𝑒(𝑟−𝑞)ℎ − 𝑑

𝑢 − 𝑑
𝑒−𝑟ℎ𝑉(𝑆𝑢, 𝑡) +

𝑢 − 𝑒(𝑟−𝑞)ℎ

𝑢 − 𝑑
𝑒−𝑟ℎ𝑉(𝑆𝑑, 𝑡) 

 

We can rewrite this equation as follows, where 𝑝𝑢 = (𝑒(𝑟−𝑞)ℎ − 𝑑) (𝑢 − 𝑑)⁄  and 𝑝𝑑 =

(𝑢 − 𝑒(𝑟−𝑞)ℎ) (𝑢 − 𝑑)⁄  and hence 𝑝𝑢 + 𝑝𝑑 = 1. 

 

𝑉(𝑆, 𝑡 − ℎ) = 𝑝𝑢𝑒−𝑟ℎ𝑉(𝑆𝑢, 𝑡) + 𝑝𝑑𝑒−𝑟ℎ𝑉(𝑆𝑑, 𝑡) 
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Assuming that the two potential movements are chosen so that 𝑝𝑢 and 𝑝𝑑 are both positive, i.e. with 

𝑢 > 𝑒(𝑟−𝑞)ℎ > 𝑑 then  𝑝𝑢 and 𝑝𝑑 correspond to the relevant risk neutral probabilities for the lattice 
element. Getting 𝑝𝑢 and 𝑝𝑑 to adhere to this constraint is not normally difficult for an option like this 

since 𝑒(𝑟−𝑞)ℎ is the forward price of the security and it would be an odd sort of binomial tree that 
did not straddle the expected movement in the underlying. 
 
In the multi-period analogue, the price of the underlying is assumed to be able to move in the first 
period either up or down by a factor 𝑢 or 𝑑, and in second and subsequent periods up or down by a 
further 𝑢 or 𝑑 from where it had reached at the end of the preceding period. 𝑢 or 𝑑 can in principle 
vary depending on the time period (e.g. 𝑢 might be size 𝑢𝑖 in time step 𝑖, etc.) but it would then be 
usual to require the lattice to be recombining.  In such a lattice an up movement in one time period 
followed by a down movement in the next leaves the price of the underlying at the same value as a 
down followed by an up.  It would also be common, but again not essential (and sometimes 

inappropriate), to have each time period of the same length, ℎ. 
 
By repeated application of the backward equation referred to above, we can derive the price 𝑛 
periods back, i.e. at 𝑡 = 𝑇 − 𝑛ℎ, of a derivative with an arbitrary payoff at time 𝑇.  If 𝑢, 𝑑, 𝑝𝑢, 𝑝𝑑, 𝑟 
and 𝑞 are the same for each period then: 
 

𝑉(𝑆, 𝑇 − 𝑛ℎ) = 𝑒−𝑟𝑛ℎ ∑ (
𝑛
𝑚

) 𝑝𝑢
𝑚𝑝𝑑

𝑛−𝑚𝑉(𝑆𝑢𝑚𝑑𝑛−𝑚, 𝑇)

𝑛

𝑚=0

 

 
where: 
 

(
𝑛
𝑚

) =
𝑛!

𝑚! (𝑛 − 𝑚)!
 

 
This can be re-expressed as an expectation under a risk-neutral probability distribution, i.e. in the 
following form, where 𝐸(𝑋|𝐼) means the expected value of 𝑋 given the risk neutral measure, 
conditional on being in state 𝐼 when the expectation is carried out: 
 

𝑉(𝑆, 𝑡) = 𝐸(𝑒−𝑟(𝑇−𝑡)𝑉(𝑆, 𝑇)|𝑆𝑡) 

 
Suppose we have a European-style put option with strike price 𝐾 (assumed to be at a node of the 
lattice) maturing at time 𝑇 and we want to identify its price, 𝑃(𝑆, 𝑡) prior to maturity, i.e. where 𝑡 <
𝑇. Suppose also that 𝑟 and 𝑞 are the same for each time period. The price of the option at maturity is 
given by its payoff, i.e. 𝑃(𝑆, 𝑇) = max (𝐾 − 𝑆, 0) where 𝐾 = 𝑆0𝑢𝑚0𝑑𝑛−𝑚0 say for some 𝑚0 (here 𝑆0 
is the price ruling at time 𝑡 = 0 used to construct the first node in the lattice). Applying the multi-
period pricing formula set out above, we find that the price of such an option at time 𝑡 = 𝑇 − 𝑛ℎ <
𝑇 in such a framework is as follows, where 𝐵(𝑥, 𝑛, 𝑝) is the binomial probability distribution 

function, i.e. 𝐵(𝑥, 𝑛, 𝑝) = ∑ (
𝑛
𝑚

) 𝑝𝑚(1 − 𝑝)𝑛−𝑚𝑥
𝑚=0 , bearing in mind that 𝑝𝑢 + 𝑝𝑑 = 1: 

 

𝑃(𝑆, 𝑇 − 𝑛ℎ) = 𝑒−𝑟𝑛ℎ ∑ (
𝑛
𝑚

) 𝑝𝑢
𝑚𝑝𝑑

𝑛−𝑚(𝐾 − 𝑆0𝑢𝑚𝑑𝑛−𝑚)

𝑚0

𝑚=0

 

⟹ 𝑃(𝑆, 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐾𝐵(𝑚0, 𝑛, 𝑝) − 𝑒−𝑞(𝑇−𝑡)𝐵 (𝑚0, 𝑛,
𝑢𝑝𝑢

𝑢𝑝𝑢 + 𝑑𝑝𝑑
) 

 

Suppose we define the volatility of the lattice to be 𝜎 = log (𝑢 𝑑⁄ ) (2√ℎ)⁄  and suppose too that this 

is constant, i.e. the same for each time period. Then if we allow ℎ to tend to zero, keeping 𝜎, 𝑡, 𝑇 



etc. fixed, with 𝑢 𝑑⁄ ⟶ 1 by, say, setting log(𝑢) = 𝜎√ℎ and log(𝑑) = −𝜎√ℎ, we find that the above 
formula and hence the price of the put option tends to: 
 

𝑃(𝑆, 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(−𝑑2) − 𝑆𝑒−𝑞(𝑇−𝑡)𝑁(−𝑑1) 
 
where 
 

𝑑1 =
log(𝑆 𝐾⁄ ) + (𝑟 − 𝑞 + 𝜎2 2⁄ )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡 
 
and 𝑁(𝑧) is the cumulative Normal distribution function, i.e. 
 

𝑁(𝑧) =
1

√2𝜋
∫ 𝑒−𝑥2 2⁄ 𝑑𝑥

𝑧

−∞

 

 
The corresponding formula (in the limit) for the price, 𝐶(𝑆, 𝑡) of a European call option maturing at 
time 𝑇 with a strike price of 𝐾 can be derived in an equivalent manner as: 
 

𝐶(𝑆, 𝑡) = 𝑆𝑒−𝑞(𝑇−𝑡)𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2) 
 
This formula can also be justified on the grounds that the value of a combination of a European put 
option and a European call option with the same strike price should satisfy so-called put-call parity, if 
they are to satisfy the principle of no arbitrage, i.e. (after allowing for dividends and interest): 
 

𝑠𝑡𝑜𝑐𝑘 + 𝑝𝑢𝑡 = 𝑐𝑎𝑠ℎ + 𝑐𝑎𝑙𝑙 
⟹ 𝑆𝑒−𝑞(𝑇−𝑡) + 𝑃 = 𝐾𝑒−𝑟(𝑇−𝑡) + 𝐶 

 
Strictly speaking, these formulae for European put and call options are the Garman-Kohlhagen 
formulae for dividend bearing securities and only if 𝑞 is set to zero do they become the original 
Black-Scholes option pricing formulae, although in practice most people would actually refer to 
these formulae as the Black-Scholes formulae, and call a world satisfying the assumptions underlying 
these formulae as a ‘Black-Scholes’ world. The volatility 𝜎 used in their derivation has a natural 
correspondence with the volatility that the share price might be expected to exhibit in a Black-
Scholes world. 
 


