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Abstract 
 
The following pages provide an introduction to how it is possible to calibrate probability 
distributions used for risk measurement purposes to market-implied data. 
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1. Introduction 
 
1.1 Kemp (2005) and Kemp (2009) argue in favour of greater use of market-consistent risk 
management. This involves greater focus on market implied probability distributions and other risk 
parameters (consistent with the market prices of derivatives that might protect against the relevant 
risks) and lesser focus on estimating such parameters using time series analysis of historic market 
behaviour. 
 
1.2 In practice, as is explained in Kemp (2009), there is insufficient market implied data available 
to be able to build up a full specification of the relevant market implied probability distribution. 
However, there is often some market implied data that we can use for calibration purposes. We 
explain in these pages how we can combine this data with an assumed prior distribution in a 
Bayesian or credibility-weighted type manner, thereby deriving risk measures that are as market 
consistent as possible, but still coloured by our prior views in cases where market implied data does 
not exist. A natural prior to adopt in this context, if we think the historic data is relevant, is one 
based on the relevant historic dataset. 
 
1.3 A prototype methodology for market consistent risk measurement is described in Kemp 
(2009) involving an analytical weighted Monte Carlo, aka analytical relative entropy approach. This 
involves identifying a distribution that is, in some suitable sense, as ‘close as possible’ to the original 
prior distribution but that has characteristics that match calibration characteristics derived from 
market implied data (or otherwise). 
 
1.4 As its name suggests, the analytical weighted Monte Carlo methodology has its genesis in 
the weighted Monte Carlo simulation approach, see Elices & Gimenez (2006) and Avellandeda et al 
(2001). In this approach, we calibrate a simulation exercise not by changing the draws from some 
previously specified prior probability distribution but by changing the assumed likelihoods ascribed 
to each draw in the computation of statistics in which we are interested (e.g. mean, standard 
deviation, other moments, quantiles etc.). Typically we choose these revised likelihoods of 
occurrence to minimise the relative entropy between the original prior distribution and the 
calibrated output distribution. The relative entropy between two discrete distributions 𝐩 and 𝐪 is 
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given by the following, where 𝑖 here indexes the possible outcomes (the formula for continuous 
distributions is derived in an analogous manner): 
 

𝐷(𝐩, 𝐪) =∑𝑝𝑖log
𝑝𝑖
𝑞𝑖

𝑁

𝑖=1

 

 
1.5 The analytical weighted Monte Carlo methodology notes that in the limit where the number 
of simulations 𝑁 → ∞ we will recover an exact output probability distribution and that in a number 
of cases of interest this probability distribution can be expressed in ‘analytical’ form, i.e. we may be 
able to recover relatively simply what the methodology would have produced had we been able to 
use an infinitely large Monte Carlo sample size. 
 
1.6 In the special case of single instrument calibration involving a univariate normal prior 
distribution, say, 𝑁(𝜇, 𝜎2) we find, as we might expect, that application of an analytical weighted 
Monte Carlo returns a normal distribution with the following characteristics, see Kemp (2009): 
 

(a) If we have no market data whatsoever to calibrate to then the calibrated distribution is the 
same as the prior distribution, i.e. 𝑁(𝜇, 𝜎2); 

 
(b) If we have just a mean to calibrate to, say 𝜇0, then the calibrated distribution is 𝑁(𝜇0, 𝜎

2); 
and 

 

(c) If we have both a mean and a variance to calibrate to, say, 𝜇0 and 𝜎0
2, then the calibrated 

distribution is 𝑁(𝜇0, 𝜎0
2). 

 
For risk management purposes, it is usual to adopt the assumption that the return on all assets is the 
same (i.e. to discount the possibility of ‘manager skill’, because it is prudent to do so). It can be 
argued that (b) provides the theoretical justification for this, i.e. in effect we are ‘calibrating’ some 
assumed prior distribution (that might include differential returns) to fit a constraint that requires 
any prior assumed manager skill in asset selection not actually to be present in practice.Without loss 
of generality the mean return can for the purposes of this paper be set to zero (since our focus will 
be on relative returns). Hence our focus will be on second and higher moments (or just second 
moments in the case of normally distributed variables, which is the main focus of these pages). 
 
2. Multi-instrument calibration 
 
2.1 Risk models in practice need to cater for multiple instruments.  The most common 
framework involves assuming that the underlying (log) return distribution is multivariate normal. 
Traditionally, the corresponding covariance matrix is derived from historical observations although 
usually a parsimonious factor structure is imposed to limit the number of terms in the covariance 
matrix that need to be estimated from past history, see e.g. Kemp (2005) and Kemp (2009). 
 
2.2 Calibrating a multivariate normal prior distribution to market-implied (or other) data is 
typically different to the univariate case because we will usually have fewer calibration points than 
we have degrees of freedom in relation to the number of terms in the now multi-dimensional 
covariance matrix. However, some of the principles noted in the univariate case still carry through to 
the multivariate case. In particular, if we are calibrating a multivariate normal prior distribution 
merely to market implied volatilities and covariances for a given fixed period (i.e. merely to second 
moments) then the resulting calibrated distribution will still be multivariate normal distribution, just 
with a different covariance matrix. 
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2.3 A multivariate normal distribution 𝑁(𝛍,𝛀) with mean 𝛍 (a vector of random variables) and 
covariance matrix 𝛀 has a probability density function, 𝑞(𝐱) as follows, where 𝑛 is the number of 
entries in the vector 𝛍 and 𝑛2 the number of entries in 𝛀): 
 

𝑞(𝐱) =
1

(2𝜋)𝑛 2⁄ |Ω|1 2⁄
exp(−

1

2
(𝐱 − 𝛍)𝑇𝛀−1(𝐱 − 𝛍)) 

 
 
2.4 We note that: 
 

(a) Any 𝑛-dimensional multivariate normal distribution has a probability density function 
expressible as 𝐶 × exp(−𝐹) where 𝐶 is some suitable constant and 𝐹 is a positive definite 
symmetric quadratic form (with possibly non-zero drift) in 𝑛 different variables, and vice 
versa. 

 
(b) Applying analytical weighted Monte Carlo (using relative entropy) to the sort of calibration 

problem referred to above will therefore return (unless the calibration problem is ill-posed) 
a calibrated probability distribution which also has multivariate normal form. This is because 
the problem can be restated using Lagrange multipliers to one that involves minimising 𝐿 
defined as follows, where the 𝜆𝑗 refer to whatever calibrations there are on the means and 

𝜆𝑗𝑘 to those on covariance terms (in general there will be fewer than 𝑛2 of the 𝜆𝑗𝑘): 

 

𝐿 = ∫𝑝. log(
𝑝

𝑞
)𝑑𝐱 +∑𝜅𝑖 (∫𝑝𝑑𝐱 − 1)

𝑛

𝑖=1

+∑𝜆𝑗 (∫𝑥𝑗𝑝𝑑𝐱 −𝑚𝑗)

+∑𝜆𝑗𝑘 (∫(𝑥𝑗 −𝑚𝑗)(𝑥𝑘 −𝑚𝑘)𝑝𝑑𝐱 − 𝑠𝑗𝑘
2 ) 

 
The solution to this minimisation problem is given by the following: 

 
𝜕𝐿

𝜕𝑝
= 0,

𝜕𝐿

𝜕𝜅𝑖
= 0,

𝜕𝐿

𝜕𝜆𝑗
= 0,

𝜕𝐿

𝜕𝜆𝑗𝑘
= 0 

⟹ log(𝑝) − log(𝑞) + 1 +∑𝜅𝑖

𝑛

𝑖=1

+∑𝜆𝑗𝑥𝑗 +∑𝜆𝑗𝑘(𝑥𝑗 −𝑚𝑗)(𝑥𝑘 −𝑚𝑘) = 0 

⟹ 𝑝(𝐱) = 𝑞(𝐱)exp(−(1 +∑𝜅𝑖

𝑛

𝑖=1

+∑𝜆𝑗𝑥𝑗 +∑𝜆𝑗𝑘(𝑥𝑗 −𝑚𝑗)(𝑥𝑘 −𝑚𝑘))) 

 
subject to ∫𝑝𝑑𝐱 = 1 (i.e. that 𝑝 is a probability distribution) and other constraints derived 
directly from calibration requirements, e.g. that ∫𝑥𝑗𝑝𝑑𝑥 = 𝑚𝑗 etc. 

 
Thus if 𝑞(𝐱) is expressible as 𝐶 × exp(−𝐹) as above, then 𝑝(𝐱) will be too, just for a 

different 𝐹. 
 

(c) Applying the principle of no arbitrage we may therefore expect 𝑝(𝐱) to have zero mean 
(more precisely for each element of 𝛍 to be the same, which without loss of generality we 
may take as zero if we are focusing on relative returns) and therefore to have the form: 
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𝑝(𝐱) = 𝑞(𝐱)exp(−(1 +∑𝜅𝑖

𝑛

𝑖=1

+∑𝜆𝑗𝑘𝐹𝑗𝑘)) 

 
where the 𝐹𝑗𝑘 are symmetric zero-drift quadratic forms (= 𝐱𝑇𝑉𝑗𝑘𝐱, say) corresponding to 

each of the implied volatilities/implied correlations to which we wish to calibrate. 
 

(d) The calibrated distribution will therefore be multivariate normal with zero mean and 
probability distribution as follows, for suitably chosen 𝜆𝑗𝑘 that reproduce for the calibrations 

the relevant market implied variances or covariances (where 𝑐𝑝 is some constant the value 

of which ensures that ∫𝑝𝑑𝐱 = 1): 
 

𝑝(𝐱) =
1

(2𝜋)𝑛 2⁄
exp(−

1

2
𝐱𝑇𝛀−1𝐱 −∑𝜆𝑗𝑘𝐱

𝑇𝑉𝑗𝑘𝐱) 

 
 

(e) Thus the calibrated probability distribution will be characterised by a covariance matrix �̅�  as 
follows: 

 

−
1

2
𝐱𝑇�̅�−1𝐱 = −

1

2
𝐱𝑇𝛀−1𝐱 −∑𝜆𝑗𝑘𝐹𝑗𝑘 

⟹ �̅� = (𝛀−1 + 2∑𝜆𝑗𝑘𝑉𝑗𝑘)
−𝟏

 

 
2.5 What in practice does this mean in the n-instrument case? Suppose we wish to calibrate to 

𝑚 different variances 𝑠𝑗
2  (𝑗 = 1,… ,𝑚) exhibited by instrument baskets described by vectors 𝐰𝑎, 

where each 𝐰𝑎 is a vector of 𝑛 elements, the first element of which is the weight in the basket of the 
first instrument etc. For example, suppose we have implied volatilities for each instrument in 
isolation and for an equally weighted portfolio of the instruments.  We would then have   𝑚 = 𝑛 + 1 
calibrations, the first 𝑛 of which involve weight vectors of the form 𝐰𝑎 = (0,… ,0,1,0,… 0)  (with the 
𝑗’th element of the weight vector being 1, other terms being zero) and the last calibration having 
𝐰𝑛+1 = (1 𝑛⁄ , 1 𝑛⁄ ,… , 1 𝑛⁄ ). If instead of calibrating to the implied volatility of an equally weighted 
basket we wished to calibrate to the implied volatility of a market cap weighted index implied 
volatility then  𝐰𝑛+1 would be a vector of index weights. 
 
2.6 The calibrated probability distribution will then have a covariance matrix as follows, where 
each 𝐖𝑎 = 𝐰𝑎𝐰𝑎

𝑇  is an 𝑛 × 𝑛 dimensional matrix: 
 

�̅� = (𝛀−1 + 2∑𝜆𝑎𝐖𝑎

𝑚

𝑎=1

)

−𝟏

 

 

subject to the 𝑚 calibration equations 𝑠𝑎
2 = 𝐰𝑎

𝑇�̅�𝐰𝑎. 
 
2.7 As long as this problem is not ill posed (e.g. because there are too many calibrations relative 
to the number of terms in the covariance matrix, or because there are no feasible solutions to the 

equations) calibration involves solving a set of 𝑚 simultaneous equations 𝑠𝑎
2 = 𝐰𝑎

𝑇�̅�𝐰𝑎 in 𝑎 
unknowns, i.e. the 𝜆𝑎. 
 
2.8 An example of such a calibration is set out in the Appendix. 
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3. Other comments 
 
3.1 If 𝑚 > 1 then the simultaneous equations generated by the above procedure do not appear 
to have analytic solutions, see e.g. the Appendix. Instead they must in general be solved numerically 
by some iterative root search algorithm, e.g. one that finds the value of 𝛌 = (𝜆1, … , 𝜆𝑚) that 
satisfies the following equation: 
 

∑(𝑠𝑎
2(𝛌)−�̂�𝑎

2)

𝑚

𝑎=1

= 0 

 
where: 
 

𝑠𝑎
2(𝛌) = 𝐰𝑎

𝑇 (𝛀−1 + 2∑𝜆𝑎𝐖𝑎

𝑚

𝑎=1

)

−1

𝐰𝑎 

 
If the problem involves a relatively small number of instruments/calibration implieds then the 
problem can be solved using relatively straightforward tools such as the Excel Solver add-in. For 
larger instrument universes and/or calibration sets, more sophisticated root searching algorithms 
may be needed. 
 
3.2 However, it may not always be appropriate to adopt a rote formulaic approach to 
calibration. For example, suppose we were trying to calibrate a UK equity risk model. Easily 
observable implied volatilities are available from listed equity derivatives on the FTSE100 index, the 
FTSE250 index but only for an incomplete range of individual equities. What should we do for 
securities for which there are no readily available implied volatilities? 
 
3.3 The problem of incomplete or missing data is, of course, a generic problem with calibration, 
and not specific to the above problem. We could of course calibrate solely to those instrument 
volatilities that are easily observable. However, this would typically disproportionately affect the 
volatility assigned to the instruments included in the calibration set, see Appendix. Suppose that in 
fact general levels of implied volatilities are materially higher than those in the uncalibrated prior 
distribution, e.g. because there is an overall perception within the market that the “world is 
uncertain at the moment”. Would we want calibration disproportionately to mark up volatilities of 
securities on which there were readily available option prices versus those on which there were not? 
 
3.4 An alternative would perhaps be to introduce just two 𝜆𝑎 ’s, i.e. two calibration equations. 
One might calibrate the volatility of the main market index to its current implied volatility (or 
actually in the spirit of above the variance to its current implied variance). The other might calibrate 
the average volatility (variance) of individual instruments to the average of their individual implied 
volatilities (variances) to the extent that these exist, with the same overall volatility (variance) 
adjustment then also applied to instruments where there is no observable implied volatility. Or 
perhaps we could adopt an intermediate approach of applying averaging within individual sectors 
rather than across the market as a whole. Of course, such averaging approaches would be less 
effective at calibrating individual instrument volatilities so that they exactly matched their own 
implied volatilities where these exist. That is the nature of averaging! We might also want to impose 
further constraints on the calibration to force retention of any parsimonious factor structure 
imposed on the prior distribution. 
 
3.5 Analytical weighted Monte Carlo can also be used to calibrate risk models to cater for 
different future time periods, as long as there is a suitable term structure of implied volatilities 
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available. We merely need to repeat the exercise separately for each term. Again, if necessary, 
‘missing’ calibration data can be handled using averaging approaches as per 3.4. 
 
3.6 It is worth noting that calibration of risk models to market implieds may make resulting ex 
ante tracking errors, VaR’s and other similar risk measures more volatile (because implied volatilities 
are themselves volatile over even quite short periods of time). This may be important if explicit ex 
ante tracking error or VaR style risk limits are present in investment management agreements.  Use 
of risk statistics calibrated to market implieds might then create greater likelihood of breach of such 
mandate restrictions merely because of market movements. We could dampen the impact of this 
‘volatility of volatility’ by applying some sort of credibility weighting to current implied volatilities 
versus volatilities extrapolated from past history but of course only at the expense of calibration 
quality. Alternatively, it might be appropriate to quote more than one set of risk statistics, e.g. some 
‘longer term’ ones (perhaps based solely on extrapolating past history using a relatively long time 
window) and some ‘shorter-term’ ones more fully calibrated to market implieds.  The former might 
then be used more for mandate limit purposes and the latter more for day-to-day management of 
the portfolio. 
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APPENDIX: Example calibration to market implied volatilities using the analytical weighted Monte 
Carlo approach 
 
As at some date in the past a leading commercial vendor’s risk system included the following 
standard deviations and correlations within its covariance matrix risk model for the following four 
UK equities: 
 

Security Standard Deviation 
(%pa) 

Correlation with 

1 0.29 0.33 0.30 

AL 16.92 0.29 1 0.35 0.29 

BLT 28.56 0.33 0.35 1 0.45 

AVZ 36.64 0.30 0.29 0.45 1 

BAY 32.85 1 0.29 0.33 0.30 

 
The predicted tracking error of a model portfolio consisting of 35% Alliance and Leicester, 35% BHP 
Billiton, 15% Amvescap and 15% British Airways versus an equally weighted benchmark of these four 
stocks using this risk model was 5.35%pa.  
 
As at approximately the same date the (at-the-money) implied volatilities for (call) options on these 
equities were approximately as follows: 
 

Security Implied Volatility (%pa) 

AL 22 

BLT 31 

AVZ 30 

BAY 27 

 

Calibrating simultaneously to these four pieces of market information using the analytical weighted 
Monte Carlo approach gives a calibrated covariance matrix as shown below.  The calibrated volatility 
of each individual security now matches its implied volatility.  There are also some changes to 
individual correlations. The tracking error of the model portfolio using this calibrated covariance 
matrix is 4.77%pa. 
 

Security Standard Deviation 
(%pa) 

Correlation with 

AL BLT AVZ BAY 

AL 22 1 0.35 0.33 0.30 

BLT 31 0.35 1 0.33 0.26 

AVZ 30 0.33 0.33 1 0.36 

BAY 27 0.30 0.26 0.36 1 

 
If we were also to calibrate to an ‘index’ implied volatility, then the individual security implied 
volatilities would remain the same, since they are already calibrated to the market. What instead 
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would happen is that correlations between securities would change. There is no listed option 
relating to a basket of these four stocks.  If the above model fully matched market implieds then the 
‘index’ implied volatility would be 19.3%pa. But suppose that there was an observable ‘index’ 
implied volatility and that it was 15%pa. The covariance matrix would then be as follows. The 
tracking error of the model portfolio would increase to 5.73%pa. 
 

Security Standard Deviation 
(%pa) 

Correlation with 

AL BLT AVZ BAY 

AL 22 1 0.13 0.09 0.06 

BLT 31 0.13 1 0.03 -0.05 

AVZ 30 0.09 0.03 1 0.12 

BAY 27 0.06 -0.05 0.12 1 

 

Conversely, if our ‘index’ basket actually had an implied volatility of 21%pa then the covariance 
matrix would become: 
 

Security Standard Deviation 
(%pa) 

Correlation with 

AL BLT AVZ BAY 

AL 22 1 0.46 0.45 0.41 

BLT 31 0.46 1 0.46 0.40 

AVZ 30 0.45 0.46 1 0.47 

BAY 27 0.41 0.40 0.47 1 

 

The average correlation between individual securities is quite sensitive to divergent movements 
between index implied volatility and average single security implied volatility, as is the tracking error 
of the model portfolio, which would now be 4.30%pa. 
 
As we might also expect, each individual security calibration point disproportionately affects the 
volatility of that particular security. For example, suppose we only calibrated the original risk model 
to one implied volatility, namely the one for Amvescap. The calibrated volatilities would then be as 
follows: 
 

 Volatility prior to 
calibration (%pa) 

Volatility post 
calibration (%pa) 

Change 

AL 16.92 16.62 -2% 

BLT 28.56 27.97 -2% 

AVZ 36.64 30.00 -18% 

BAY 32.85 31.75 -3% 

 
 


