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1. Function definitions 
Gamma, incomplete gamma, beta, incomplete beta, regularised incomplete beta, binomial 
 

2. Series expansions 
Exponential, natural logarithm, binomial, Taylor series 
 

3. Calculus 
Integration by parts, changing order of integration, differentiating an integral 
 

4. Statistical distributions 
Probability distribution terminology, Bayes’ theorem, compound distributions 
 

5. Statistical methods 
Sample moments, parametric inference (with normal underlying distributions), maximum likelihood 
estimators, method-of-moments estimators, goodness of fit, linear regression, generalised linear 
models, correlations, analysis of variance, Bayesian priors and posteriors 
 

6. Monte Carlo methods 
Creation of normal random variables, Cholesky decomposition 
 

7. Interest rates and bond pricing 
Spot and forward rates, duration, modified duration, gross redemption yield (yield to maturity), 
credit spread, option-adjusted spread, annualisation conventions 
 

8. Financial derivatives 
Forward prices, Black-Scholes formulae 
 

9. Risk measures 
Value-at-Risk, tail Value-at-Risk, expected shortfall, expected worst outcome, tracking error, 
drawdown, marginal VaR, incremental VaR, estimating VaR 
 

10. Portfolio optimisation 
Mean-variance optimisation, capital asset pricing model 
 

11. Extreme value theory 
Maximum domain of attraction, Fisher-Tippett theorem, Pickands-Balkema-de Hann theorem, 
estimating tail distributions 
 

12. Copulas 
Definition, properties, Sklar’s theorem, example copulas, tail dependence, simulating copulas 
 

13. Miscellaneous 
Combining solvency capital requirements using correlations, credit risk modelling, GARCH modelling, 
linear algebra and principal components, central limit theorem, Cornish-Fisher asymptotic 
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expansion, Euler capital allocation principle, equiprobable outcomes for a multivariate normal 
distribution, RAROC and EVA 
 

Appendix A: Probability distributions 
 
Discrete: Binomial (and Bernoulli), Poisson 
 
Continuous: Normal, uniform, chi-squared, exponential, F, generalised extreme value (GEV) (and 
Frechét, Gumbel and Weibull), generalised Pareto, lognormal, Student’s t 
 
Other: Distributional mixtures, location and scale adjusted distributions, multivariate distributions, 
distributional families 
 
Tables: cumulative distribution function and quantile function for normal distribution 
 
Note: In this note, 𝑁(𝑥) denotes the standard cumulative normal distribution function, 𝑙𝑜𝑔 𝑥 denotes 
logarithms to base 𝑒, 𝑙𝑜𝑔2 𝑥 = (𝑙𝑜𝑔 𝑥)2 etc. but if 𝐹(𝑥) is a cumulative distribution function then 
𝐹−1(𝑥) is the corresponding inverse cumulative distribution function. 
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1. Function Definitions 
[ERMFormulaBookFunctionDefinitions] 
 
1.1 Gamma function, 𝚪(𝒒) 
 

Γ(𝑞) = ∫ 𝑡𝑞−1𝑒−𝑡𝑑𝑡

∞

0

 

 
Defined for 𝑞 ∈ ℝ, 𝑞 not a negative integer. Other properties: Γ(𝑞 + 1) = 𝑞Γ(𝑞). If 𝑛 is a positive 

integer then 𝑛! =  Γ(𝑛 + 1). Γ(1 2⁄ ) = √𝜋. 
 
1.2 Incomplete gamma function, 𝚪𝒑(𝒒), beta function, 𝑩(𝒑, 𝒒), incomplete beta function, 

𝑩𝒙(𝒑, 𝒒), regularised incomplete beta function, 𝑰𝒙(𝒑, 𝒒) 
 

Γ𝑝(𝑞) = ∫ 𝑡
𝑞−1𝑒−𝑡𝑑𝑡

𝑝

0

      (𝑝, 𝑞 > 0) 

𝐵(𝑝, 𝑞) = ∫𝑡𝑝−1(1 − 𝑡)𝑞−1𝑑𝑡

1

0

      (𝑝, 𝑞 > 0) 

𝐵𝑥(𝑝, 𝑞) = ∫ 𝑡
𝑝−1(1 − 𝑡)𝑞−1𝑑𝑡

𝑥

0

      (𝑝, 𝑞 > 0, 0 ≤ 𝑥 ≤ 1) 

𝐼𝑥(𝑝, 𝑞) =
𝐵𝑥(𝑝, 𝑞)

𝐵(𝑝, 𝑞)
 

 
The beta function is related to the gamma function as follows: 
 

𝐵(𝑝, 𝑞) =
Γ(𝑝)Γ(𝑞)

Γ(𝑝 + 𝑞)
 

 
The gamma, incomplete gamma, beta, incomplete beta and regularised incomplete beta can also be 
defined for negative (non-integral) values of 𝑝 and 𝑞 and for complex (non-real) values by analytic 
continuation. 
 

1.3 The binomial coefficient, (
𝒏
𝒓
) 

 
For 𝑛 and 𝑟 integers ≥ 0 this is defined as: 
 

(
𝑛
𝑟
) ≡ 𝐶𝑟 ≡𝑛

𝑛!

(𝑛 − 𝑟)! 𝑟!
=

Γ(𝑛 + 1)

Γ(𝑛 − 𝑟 + 1)Γ(𝑟 + 1)
=

𝑛 + 1

𝐵(𝑟 + 1, 𝑛 − 𝑟 + 1)
 

 
 

2. Series expansions (for real-valued functions) 
[ERMFormulaBookSeriesExpansions] 
 
2.1 Exponential function and natural logarithm (log) function 
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exp(𝑥) = 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+⋯ =∑

𝑥𝑗

𝑗!

∞

𝑗=0

 

log(1 + 𝑥) = ln(1 + 𝑥) = 𝑥 −
𝑥2

2
+
𝑥3

3
… = −∑

(−𝑥)𝑗

𝑗

∞

𝑗=1

 

 
2.2 Binomial expansion 

(𝑎 + 𝑏)𝑛 = 𝑎𝑛 + (
𝑛
1
)𝑎𝑛−1𝑏 + (

𝑛
2
)𝑎𝑛−2𝑏2 +⋯+ 𝑏𝑛 =∑(

𝑛
𝑗) 𝑎

𝑛−𝑗𝑏𝑗
𝑛

𝑗=0

 

 

where (
𝑛
𝑟
) = 𝐶𝑟 =𝑛

𝑛!

(𝑛−𝑟)!𝑟!
 is the binomial coefficient. 

 
If we substitute into the binomial expansion 𝑎 = 1, 𝑏 = 𝑥 and 𝑛 = 𝑝 we have (converges for any 𝑝 ∈
ℝ if −1 < 𝑥 < 1): 

(1 + 𝑥)𝑝 = 1 + 𝑝𝑥 +
𝑝(𝑝 − 1)

2!
𝑥2 +⋯ 

 
A corollary is that: 

lim
𝑛→∞

(1 +
𝑥

𝑛
)
𝑛

= 𝑒𝑥 ≡ exp(𝑥) 

 
2.3 Taylor series expansion 
 

For one variable: if series converges (where 𝑓(𝑗)(𝑥) is the 𝑗’th derivative of 𝑓(𝑥) and 𝑓′(𝑥) =

𝑓(1)(𝑥), 𝑓′′(𝑥) = 𝑓(2)(𝑥) etc.): 

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥) +
ℎ2

2!
𝑓′′(𝑥) +⋯ =∑

𝑓(𝑗)(𝑥)ℎ𝑗

𝑗!

∞

𝑗=0

 

 
For more than one variable: e.g. for two variables, if series converges (where  𝑓𝑥

′(𝑥, 𝑦) =
𝜕𝑓(𝑥)

𝜕𝑥
, 𝑓𝑥𝑦
′′ (𝑥, 𝑦) =

𝜕2𝑓(𝑥)

𝜕𝑥𝜕𝑦
 etc.): 

 
𝑓(𝑥 + ℎ, 𝑦 + 𝑘) = 𝑓(𝑥, 𝑦) + ℎ𝑓𝑥

′(𝑥, 𝑦) + 𝑘𝑓𝑦
′(𝑥, 𝑦)                                           

                         +
1

2!
(ℎ2𝑓𝑥𝑥

′′ (𝑥, 𝑦) + 2ℎ𝑘𝑓𝑥𝑦
′′ (𝑥, 𝑦) + ℎ2𝑓𝑦𝑦

′′ (𝑥, 𝑦)) + ⋯ 

 
 

3. Calculus 
[ERMFormulaBookCalculus] 
 
3.1 Integration by parts 

∫𝑢𝑣′𝑑𝑥

𝑏

𝑎

= [𝑢𝑣]𝑎
𝑏 −∫𝑣𝑢′𝑑𝑥

𝑏

𝑎

 

 
3.2 Changing the order of integration in double integrals 
 
Where the domain of integration is the set of values (𝑥, 𝑦) for which 𝑎 ≤ 𝑦 ≤ 𝑥 ≤ 𝑏: 
 

http://www.nematrian.com/BinomialCoefficient.aspx
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∫(∫𝑓(𝑥, 𝑦)𝑑𝑦

𝑥

𝑎

)𝑑𝑥

𝑏

𝑎

= ∫(∫𝑓(𝑥, 𝑦)𝑑𝑥

𝑏

𝑦

)𝑑𝑦

𝑏

𝑎

 

or 

∫𝑑𝑥∫𝑑𝑦 𝑓(𝑥, 𝑦)

𝑥

𝑎

𝑏

𝑎

= ∫𝑑𝑦∫𝑑𝑥 𝑓(𝑥, 𝑦)

𝑏

𝑦

𝑏

𝑎

 

 
3.3 Differentiating an integral 
 

𝑑

𝑑𝑦
∫ 𝑓(𝑥, 𝑦)𝑑𝑥

𝑏(𝑦)

𝑎(𝑦)

= 𝑏′(𝑦)𝑓(𝑏(𝑦), 𝑦) − 𝑎′(𝑦)𝑓(𝑎(𝑦), 𝑦) + ∫
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
𝑑𝑥

𝑏(𝑦)

𝑎(𝑦)

 

 
 

4. Statistical distributions 
[ERMFormulaBookStatisticalDistributions] 
 
4.1 Probability distribution terminology 
 
Suppose a (continuous) real valued random variable, 𝑋, has a probability density function (or pdf)  
𝑝(𝑥). Then the probability of 𝑋 taking a value between 𝑥 and 𝑥 + 𝑑𝑥 where 𝑑𝑥 is infinitesimal, 
𝑃𝑟(𝑥 ≤ 𝑋 < 𝑥 + 𝑑𝑥), is 𝑝(𝑥)𝑑𝑥. 
 
The expected value of a function 𝑓(𝑥) (given this pdf) is defined (if the integral exists) as follows and 
is also sometimes written 〈𝑓(𝑥)〉: 
 

𝐸(𝑓(𝑋)) = ∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥

∞

−∞

 

 

For 𝑝(𝑥) to be a pdf it must exhibit certain basic regularity conditions including ∫ 𝑝(𝑥)𝑑𝑥
∞

−∞
= 1.  

 
The mean, variance, standard deviation, cumulative distribution function (cdf or just distribution 
function), inverse cumulative distribution function (inverse cdf or just inverse function or quantile 
function), skewness (or skew), (excess) kurtosis, mean excess function, 𝑟’th central and non-central 
moments and entropy are defined as: 
 

𝑚𝑒𝑎𝑛 ≡ �̅� (= 𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑎𝑙𝑠𝑜 𝜇) ≡ 𝐸(𝑋) 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≡ 𝑣𝑎𝑟(𝑋) ≡ 𝐸 ((𝑋 − 𝐸(𝑋))
2
) 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≡ 𝜎 ≡ √𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≡ 𝐹(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥) = 𝐸(1{𝑋≤𝑥}) = ∫𝑝(𝑦)𝑑𝑦

𝑥

−∞

 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑐𝑑𝑓 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐹−1(𝑞) 𝑤ℎ𝑒𝑟𝑒 𝐹−1(𝐹(𝑥)) = 𝑥 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑠𝑘𝑒𝑤(𝑋) = 𝐸 ((
𝑋 − 𝜇

𝜎
)
3

) 

(𝑒𝑥𝑐𝑒𝑠𝑠) 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝑘𝑢𝑟𝑡(𝑋) = 𝐸 ((
𝑋 − 𝜇

𝜎
)
4

) − 3 

http://www.nematrian.com/ERMFormulaBookStatisticalDistributions.aspx
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𝑚𝑒𝑎𝑛 𝑒𝑥𝑐𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢) 

𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≡ 𝜑(𝑡) 𝑤ℎ𝑒𝑟𝑒 𝜑(𝑡) = 𝐸(𝑒𝑖𝑡𝑋)  

𝑚𝑜𝑚𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ≡ 𝑀(𝑡) 𝑤ℎ𝑒𝑟𝑒 𝑀(𝑡) = 𝐸(𝑒𝑡𝑋) = 𝜑(−𝑖𝑡) 
𝑟′𝑡ℎ 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝜇𝑟 = 𝐸((𝑋 − 𝜇)

𝑟)   𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑟 ∈ ℕ+ 
𝑟′𝑡ℎ 𝑛𝑜𝑛 − 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡 = 𝜇𝑟

′ = 𝐸(𝑋𝑟)   𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝑟 ∈ ℕ+ 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐸(− log 𝑝(𝑋)) 

 
The cumulants (sometimes called semi-invariants), 𝜅𝑛, of a distribution, if they exist, are defined via 
the cumulant generating function, i.e. the power series expansion ∑ 𝜅𝑛𝑡

𝑛 𝑛!⁄∞
𝑖=1  of log𝐸(𝑒𝑡𝑥). The 

mean, standard deviation, skewness and (excess) kurtosis of a distribution are 𝜇 = 𝜅1, 𝜎2 = 𝜅2,  

𝑠𝑘𝑒𝑤(𝑋) = 𝜅3 𝜅2
3 2⁄⁄  and 𝑘𝑢𝑟𝑡(𝑋) = 𝜅4 𝜅2

2⁄  
 
The mode of a (continuous) distribution, i.e. argmax𝑥 𝑝(𝑥), is the value at which 𝑝(𝑥) is largest. 
 
The median, upper quartile and lower quartile etc. (or more generally percentile) of a (continuous) 
distribution are 𝐹−1(0.5), 𝐹−1(0.75), 𝐹−1(0.25) etc. (or 𝐹−1(1 − 𝑞)) respectively. 
 
Definitions of the above for discrete real-valued random variables are similar as long as the integrals 
involved are replaced with sums and the probability density function by the probability mass 
function 𝑝(𝑘) = 𝑃𝑟(𝑋 = 𝑘), i.e. the probability of 𝑋 taking the value 𝑘. 
 
Some of the above are not well defined or are infinite for some probability distributions. 
 
If a discrete random variable can only take values which are non-negative integers, i.e. from the set 
{0,1,2,… } then the probability generating function is defined as: 
 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐺(𝑧) = 𝐸(𝑧𝑋) 
 
Characteristic functions and (if they exist) central moments and moment generating functions can 
nearly always be derived from non-central moments by applying the binomial expansion, e.g. 
𝐸(𝑋 + 𝑘) = 𝐸(𝑋) + 𝑘, 𝐸((𝑋 + 𝑘)2) = 𝐸(𝑋2) + 2𝑘𝐸(𝑋) + 𝑘2 etc. (where 𝑘 is a constant) 
 
The domain (more fully, the domain of definition or range) of a (continuous) probability distribution 
is the set of values for which the probability density function is defined. The support of a (discrete) 
probability distribution is the set of values of 𝑥 for which 𝑃𝑟(𝑋 = 𝑥) is non-zero. The usual 
convention for a continuous function is to define the distribution only where the probability density 
function would be non-zero and for a discrete function (usually) to define the distribution only 
where the probability mass function is non-zero, in which case the domain/range and support 
coincide. 
 
The survival function (or reliability function) is the probability that the variable takes a value greater 
than 𝑥 (i.e. probability a unit survives beyond time 𝑥 if 𝑥 is measuring time) so is: 
 

𝑆(𝑥) = 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥) 
 
The hazard function (also known as the failure rate) is the ratio of the pdf to the survival function, so 
is: 
 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑓(𝑥)

1 − 𝐹(𝑥)
 

 

http://www.nematrian.com/MnModeOfArray.aspx
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The cumulative hazard function is the integral of the hazard function (i.e. the probability of failure at 
time 𝑥 given survival to time 𝑥, if 𝑥 is measuring time) so is: 
 

𝐻(𝑥) = ∫ℎ(𝑡)𝑑𝑡

𝑥

−∞

= − log(1 − 𝐹(𝑥)) 

 
Definitions, characteristics and common interpretations of a variety of (discrete and continuous) 
probability distributions are given in Appendix A. 
 
The probability that 𝑌 occurs given that 𝑋 occurs, 𝑃𝑟(𝑌|𝑋) is defined for 𝑃𝑟(𝑋) ≠ 0 as: 
 

𝑃𝑟(𝑌|𝑋) =
𝑃𝑟(𝑌 ∩ 𝑋)

𝑃𝑟(𝑋)
=
𝑃𝑟(𝑌, 𝑋)

𝑃𝑟(𝑋)
 

 
For discrete random variables, 𝑋, 𝑌, the expected value of 𝑓(𝑌) given that 𝑋 occurs, 𝐸(𝑓(𝑌)|𝑋)  is 
defined as follows, where 𝑄 is the range of 𝑌: 
 

𝐸(𝑓(𝑌)|𝑋 = 𝑥) = ∑𝑓(𝑦)𝑃𝑟(𝑌 = 𝑦|𝑋 = 𝑥)

𝑦∈𝑄

= ∑𝑓(𝑦)
𝑃𝑟(𝑌 = 𝑦, 𝑋 = 𝑥)

𝑃𝑟(𝑋 = 𝑥)
𝑦∈𝑄

 

 
The following relationships apply: 
 

𝐸(𝑌) =  𝐸(𝐸(𝑌|𝑋)) 

𝑣𝑎𝑟(𝑌) = 𝑣𝑎𝑟(𝐸(𝑌|𝑋)) + 𝐸(𝑣𝑎𝑟(𝑌|𝑋)) 

 
If 𝐗 = (𝑋1, … , 𝑋𝑛)

𝑇 is a vector of (continuous) random variables then its (multivariate) pdf 
𝑓(𝑥1, … , 𝑥𝑛) and its cdf 𝐹(𝑥1, … , 𝑥𝑛) satisfy: 
 

𝑃𝑟(𝑥1 ≤ 𝑋1 < 𝑥1 + 𝑑𝑥1, … , 𝑥𝑛 ≤ 𝑋𝑛 < 𝑥𝑛 + 𝑑𝑥𝑛) = ∫…∫𝑓(𝑥1, … , 𝑥𝑛)𝑑𝑥1…𝑑𝑥𝑛 

𝑃𝑟(𝑋1 ≤ 𝑥1, … , 𝑋𝑛 ≤ 𝑥𝑛) = 𝐹(𝑥1, … , 𝑥𝑛) 
 

The covariance between 𝑋𝑖  and 𝑋𝑗 is 𝑉𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) = 𝐸 ((𝑋𝑖 − 𝐸(𝑋𝑖)) (𝑋𝑗 − 𝐸(𝑋𝑗))) and the 

(Pearson) correlation coefficient is 𝜌𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑗) √𝑣𝑎𝑟(𝑋𝑖)𝑣𝑎𝑟(𝑋𝑗)⁄ . The covariance matrix and 

the (Pearson) correlation matrix for multiple series are the matrices 𝐕 and 𝛒 which have as their 
elements 𝑉𝑖𝑗 and 𝜌𝑖𝑗  respectively. 

 
4.2 Bayes theorem  
 
Let 𝐴1, 𝐴2, … , 𝐴𝑛 be a collection of mutually exclusive and exhaustive events with probability of 

event 𝐴𝑗 occurring being 𝑃(𝐴𝑗) ≠ 0 for 𝑗 = 1,… , 𝑛. Then, for any event 𝐵 such that 𝑃(𝐵) ≠ 0 the 

probability, 𝑃(𝐴𝑗|𝐵), of 𝐴𝑗 occurring conditional on 𝐵 occurring (more simply the probability of 𝐴𝑗 

given 𝐵) satisfies: 
 

𝑃(𝐴𝑗|𝐵) =
𝑃(𝐵|𝐴𝑗)𝑃(𝐴𝑗)

∑ 𝑃(𝐵|𝐴𝑘)𝑃(𝐴𝑘)
𝑛
𝑘=1
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A singly conditional probability (i.e. order 1) is e.g. 𝑃(𝐴|𝐵). A doubly conditional probability (i.e. 
order 2) is e.g. 𝑃(𝐴|𝐵, 𝐶), probability of 𝐴 occurring given both 𝐵 and 𝐶 take specific values. Nil-
conditioned conditional probabilities (i.e. order 0) are the marginal probabilities, e.g. 𝑃(𝐴). A 
Bayesian network (more simply Bayesian net) is a directed acyclical graph where each node/vertex, 
say 𝑁𝑖  is associated with a random variable, say 𝑋𝑖  (often a two-valued, i.e. Boolean, random 
variable) and with a conditional probability table. For nodes without a parent the table contains just 
the marginal probabilities for the values that 𝑋𝑖  might take. For nodes with parents it contains all 
conditional probabilities for the values that 𝑋𝑖  might take given that its parents take specified values. 
 
4.3 Compound distributions 
 
If 𝑋1, 𝑋2, … are independent identically distributed random variables with moment generating 
function 𝑀𝑋(𝑡) and 𝑁 is an independent non-negative integer-valued random variable then 𝑆 =
 𝑋1 +⋯+𝑋𝑁 (with 𝑆 = 0 when 𝑁 = 0) has the following properties: 
 

𝐸(𝑆) = 𝐸(𝑁)𝐸(𝑋) 

𝑣𝑎𝑟(𝑆) = 𝐸(𝑁)𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝑁)(𝐸(𝑋))
2

 

𝑀𝑆(𝑡) = 𝑀𝑁(log𝑀𝑋(𝑡)) 
 
For example, the compound Poisson distribution has: 𝐸(𝑆) = 𝜆𝑚1 and 𝑣𝑎𝑟(𝑆) = 𝜆𝑚2 where 𝜆 =
𝐸(𝑁) and 𝑚𝑟 = 𝐸(𝑋

𝑟) 
 
 

5. Statistical Methods 
[ERMFormulaBookStatisticalMethods] 
 
5.1 Sample moments 
 
A random sample of 𝑛 observations (𝑥1, 𝑥2, … , 𝑥𝑛) has (equally weighted) sample moments as 
follows: 
 

Sample mean �̅� =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 

Sample variance 𝑠2 =
1

𝑛 − 1
∑(𝑥𝑖 − �̅�)

2

𝑛

𝑖=1

=
1

𝑛 − 1
(∑𝑥𝑖

2

𝑛

𝑖=1

− 𝑛�̅�2) 

Sample skewness 
𝑛

(𝑛 − 1)(𝑛 − 2)
∑(

𝑥𝑖 − �̅�

𝑠
)
3𝑛

𝑖=1

 

Sample (excess) kurtosis 
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑(

𝑥𝑖 − �̅�

𝑠
)
4𝑛

𝑖=1

−
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
 

 
‘Population’ moments (e.g. population variance, population skewness, population excess kurtosis) 
are calculated as if the distribution from which the data was being drawn was discrete and the 
probabilities of occurrence exactly matched the observed frequency of occurrence. 
 
The least squares estimator for parameters of a distribution are the values of the parameters that 
minimise the square of the residuals, so the least squares estimator for the mean, �̂�, is the value that 

minimises 𝑌 = ∑ ((𝑥𝑖 − �̂�))
2𝑛

𝑖=1  ⇒
𝜕𝑌

𝜕�̂�
= 0 ⇒ �̂� =

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 = �̅� 

 

http://www.nematrian.com/ERMFormulaBookStatisticalMethods.aspx
http://www.nematrian.com/MnMean.aspx
http://www.nematrian.com/MnVariance.aspx
http://www.nematrian.com/MnSkew.aspx
http://www.nematrian.com/MnKurt.aspx
http://www.nematrian.com/MnPopulationVariance.aspx
http://www.nematrian.com/MnPopulationSkew.aspx
http://www.nematrian.com/MnPopulationKurt.aspx
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Non-equally weighted moments give different weights to different observations (the weights not 
dependent on the ordering of the observations), e.g. the sample non-equally weighted mean (using 
weights 𝑤𝑖) is: 
 

�̃� =
∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

 
5.2 Parametric inference (with an underlying following the normal distribution) 
 
One sample: 
 
For a single (equally weighted) sample of size 𝑛, (𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖~𝑁(𝜇, 𝜎

2) then the 
following statistics are distributed according to the Student’s t distribution and the chi-squared 
distribution: 
 

�̅� − 𝜇

𝑠 √𝑛⁄
~𝑡𝑛−1    𝑎𝑛𝑑   

(𝑛 − 1)𝑠2

𝜎2
~𝜒𝑛−1

2  

 
Two samples: 
 
For two independent samples of sizes 𝑚 and 𝑛, (𝑥1, 𝑥2, … , 𝑥𝑚) and (𝑦1, 𝑦2, … , 𝑦𝑛),  where 

𝑥𝑖~𝑁(𝜇𝑥 , 𝜎𝑥
2) and 𝑦𝑖~𝑁(𝜇𝑦, 𝜎𝑦

2) then the following statistic is distributed according to the F 

distribution: 
 

𝑠𝑥
2 𝜎𝑥

2⁄

𝑠𝑦
2 𝜎𝑦

2⁄
~𝐹𝑚−1,𝑛−1 

 
If 𝜎𝑥

2 = 𝜎𝑦
2 then: 

 

(�̅� − �̅�) − (𝜇𝑥 − 𝜇𝑦)

𝑠𝑝√
1
𝑚 +

1
𝑛

~𝑡𝑚+𝑛−2 

 

where 𝑠𝑝
2 =

1

𝑚+𝑛−2
((𝑚 − 1)𝑠𝑥

2 + (𝑛 − 1)𝑠𝑦
2) is the pooled sample variance. 

 
5.3 Maximum likelihood estimators 
 

If 𝜃 is the maximum likelihood estimator of a parameter 𝜃 based on a sample 𝐗 = (𝑋1, … , 𝑋𝑛) then 
 

𝜃 = arg max𝜃 𝐿(𝐗|𝜃) 
 
where 𝐿 is the likelihood for the sample, i.e. 𝐿 ≡ 𝑓(𝑋1|𝜃)𝑓(𝑋2|𝜃)⋯𝑓(𝑋𝑛|𝜃) and hence 
log 𝐿 (𝐗|𝜃) = ∑ log 𝑓(𝑋𝑖|𝜃)

𝑛
𝑖=1  

 

𝜃 is asymptotically normally distributed with mean 𝜃 and variance equal to the Cramér-Rao lower 
bound 
 

http://www.nematrian.com/MnWeightedMean.aspx
http://www.nematrian.com/MnDAFTest.aspx
http://www.nematrian.com/MnProbDistMLE.aspx
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𝐶𝑅𝐿𝐵(𝜃) = −
1

𝐸 (
𝜕2

𝜕𝜃2
log 𝐿 (𝜃, 𝐗))

 

 
Likelihood ratio test: 
 

−2(𝑙𝑝 − 𝑙𝑝+𝑞) = −2 log(
max
𝐻0

𝐿

max
𝐻0∪𝐻1

𝐿
)~𝑎𝑝𝑝𝑟𝑜𝑥𝜒𝑞

2 

 
where 𝑙𝑝 = max

𝐻0
log 𝐿 is the maximum log-likelihood for the model under 𝐻0 (with 𝑝 free 

parameters) and 𝑙𝑝+𝑞 = max
𝐻0∪𝐻1

log 𝐿 is the maximum log-likelihood for the model under 𝐻0 ∪ 𝐻1 

(with 𝑝 + 𝑞 free parameters). Non-equally weighted estimators can be identified by weighting the 
log 𝑓(𝑋𝑖|𝜃) terms appropriately.  
 
5.4 Method-of-moments estimators 
 
Method of moments estimators are the parameter values (for the 𝑚 parameters specifying a given 
distributional family) that result in replication of the first 𝑚 moments of the observed data. For the 

normal distribution these involve �̂� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 = �̅� and either �̂�2 =

1

𝑛−1
∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1 = 𝑠2 (the 

sample variance, if a small sample size adjustment is included) or �̂�2 =
1

𝑛
∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1  (the 

‘population’ variance, if the small sample size adjustment is ignored and we select the estimators to 
fit 𝐸(𝑋) and 𝐸(𝑋2)). In the generalised method of moments approach we select parameters that 
‘best’ fit the selected moments (given some criterion for ‘best’), rather than selecting parameters 
that perfectly fit the selected moments. 
 
5.5 Goodness of fit 
 
Goodness of fit describes how well a statistical model fits a set of observations. Examples include the 
following, where 𝑥(𝑖) is the 𝑖’th order statistic, sup𝑆 is the supremum (i.e. largest value) of the set 𝑆, 

𝐹 is the cumulative distribution function of the distribution we are fitting and 𝐹𝑛(𝑥(𝑖)) is the 

empirical distribution function: 
 

(a) Kolmogorov-Smirnov test: 𝐷𝑛 = sup
𝑖
|𝐹𝑛(𝑥(𝑖)) − 𝐹(𝑥(𝑖))| . Under the null hypothesis (that 

the sample comes from the hypothesized distribution), as 𝑛 → ∞ then √𝑛𝐷𝑛 tends to a 
limiting distribution (the Kolmogorov distribution).  

(b) Cramér-von-Mises test: 𝑇 = 𝑛𝜔2 =
1

12𝑛
+∑ (

𝑖

2𝑛
− 𝐹(𝑥(𝑖)))

2
𝑛
𝑖=1  

(c) Anderson-Darling test: 𝐴2 = −𝑛 − 𝑆 where 𝑆 = ∑
2𝑖−1

𝑛
(log𝐹(𝑥(𝑖)) + log (1 −

𝑛
𝑖=1

𝐹(𝑥(𝑛+1−𝑖)))) 

 
If data is bucketed into ranges then we may also use (Pearson’s) chi-squared goodness of fit test 
using the following test statistic, where 𝑛 is the sample size and 𝑂𝑖 is the observed count, 𝐸𝑖 =

𝑛 (𝐹(𝑌𝑖,𝑢) − 𝐹(𝑌𝑖,𝑙)) is the expected count and 𝑌𝑖,𝑙  and 𝑌𝑖,𝑢 are the lower and upper limits for the 

𝑖’th bin. The test statistic follows approximately a chi-squared distribution with 𝑘 − 𝑐 degrees of 

freedom, i.e. 𝜒2~𝜒𝑘−𝑐+1
2  where 𝑘 is the number of non-empty cells and 𝑐 is the number of 

estimated parameters plus 1: 

http://www.nematrian.com/KolmogorovSmirnov.aspx
http://www.nematrian.com/CramervonMises.aspx
http://www.nematrian.com/AndersonDarling.aspx
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𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

 

 
We may also test whether the skew or kurtosis or the two combined (the Jarque-Bera test) appear 
materially different from what would be implied by the relevant distributional family. If the null 
hypothesis is that the data comes from a normal distribution then, for large 𝑛, 𝑠𝑘𝑒𝑤~𝑁(0, 6 𝑛⁄ ), 

𝑘𝑢𝑟𝑡~𝑁(0, 24 𝑛⁄ ) and 𝐽𝐵 =
𝑛

6
(𝑠𝑘𝑒𝑤2 +

1

4
𝑘𝑢𝑟𝑡2)~𝜒2

2. 

 
The Akaike Information Criterion (AIC) (and other similar ways of choosing between different types 
of model that trade-off goodness of fit with model complexity, such as the Bayes Information 
Criterion, BIC) involves selecting the model with the highest information criterion of the form 𝐼𝐶 =

log 𝐿(𝜃) − 𝑓(𝑛, 𝑞) where there are 𝑞 unknown parameters and we are using a data series of length 

𝑛 for fitting purposes. For the AIC 𝑓(𝑛, 𝑞) = 𝑞 and for the BIC 𝑓(𝑛, 𝑞) = 𝑞 log(𝑛) 2⁄ . 
 
5.6 Linear regression 
 
In the univariate case suppose 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖  where 𝜀𝑖~𝑁(0, 𝜎

2), 𝑖 = 1,… , 𝑛 then (equally 
weighted) estimates of 𝛼 and 𝛽 are: 
 

�̂� = �̅� − �̂��̅�      𝑎𝑛𝑑       �̂� =
𝑠𝑥𝑦

𝑠𝑥𝑥
 

�̂�2 =
1

𝑛 − 2
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

=
1

𝑛 − 2
(𝑠𝑦𝑦 −

𝑠𝑥𝑦
2

𝑠𝑥𝑥
) 

 
where 
 

𝑠𝑥𝑥 =∑(𝑥𝑖 − �̅�)
2

𝑛

𝑖=1

=∑𝑥𝑖
2

𝑛

𝑖=1

− 𝑛�̅�2 

𝑠𝑦𝑦 =∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

=∑𝑦𝑖
2

𝑛

𝑖=1

− 𝑛�̅�2 

𝑠𝑥𝑦 =∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑛

𝑖=1

=∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

− 𝑛�̅��̅� 

 
Also 

�̂� − 𝛽

√
�̂�2

𝑠𝑥𝑥

~𝑡𝑛−2 

 

The individual expected responses are �̂�𝑖 = �̂� + �̂�𝑥𝑖 and satisfy the following ‘sum of squares’ 
relationship: 
 

∑(𝑦𝑖 − �̅�)
2

𝑛

𝑖=1

=∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

+∑(�̂�𝑖 − �̅�)
2

𝑛

𝑖=1

 

 
The variance of the predicted mean response is: 
 

http://www.nematrian.com/AkaikeInformationCriterion.aspx
http://www.nematrian.com/MnIntercept.aspx
http://www.nematrian.com/MnSlope.aspx
http://www.nematrian.com/MnForecast.aspx
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𝑣𝑎𝑟(�̂� + �̂�𝑥) = (
1

𝑛
+
(𝑥 − �̅�)2

𝑠𝑥𝑥
)𝜎2 

 
The variance of a predicted individual response is the variance of the predicted mean response plus 
an additional 𝜎2. 
 
For generalised least squares, if we have 𝑚 different series each with 𝑛 observations we are fitting 
𝑦𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗

𝑚
𝑖=1 + 𝜀𝑖  then the vector of least squares estimators, 𝛃 = (𝛽1, … , 𝛽𝑚)

𝑇 is given by 𝛃 =

(𝐗𝑇𝐗)−1𝐗𝑇𝐘 where 𝐗 is a 𝑛 ×𝑚 matrix with elements 𝑥𝑖𝑗  and 𝐘 is an 𝑛 dimensional vector with 

elements 𝑦𝑖.  
 
5.7 Correlations 
 
The observed (sample) correlation coefficient (i.e. Pearson correlation coefficient) between two 
series of equal lengths indexed in the same manner (𝑥1, … , 𝑥𝑛) and (𝑦1, … , 𝑦𝑛) is (where 𝑠𝑥𝑥, 𝑠𝑦𝑦 

and 𝑠𝑥𝑦 are as given in the section on linear regression): 

 

𝑟 = 𝑠𝑥𝑦 √𝑠𝑥𝑥𝑠𝑦𝑦⁄  

 
If the underlying correlation coefficient, 𝜌, is zero and the data comes from a bivariate normal 
distribution then: 
 

𝑟√𝑛 − 2

√1 − 𝑟2
~𝑡𝑛−2 

 
For arbitrary 𝜌 (−1 < 𝜌 < 1) the Fisher z transform is 𝑧(𝑟) where: 
 

𝑧(𝑟) = 𝑡𝑎𝑛ℎ−1(𝑟) =
1

2
log (

1 + 𝑟

1 − 𝑟
) 

 
If the data comes from a bivariate normal distribution then 𝑧(𝑟) is distributed approximately as 
follows: 
 

𝑧(𝑟)~𝑁 (𝑧(𝜌),
1

𝑛 − 3
)    (𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦) 

 
Two non-parametric measures of correlation are: 
 

- Spearman’s rank correlation coefficient, where 𝑞𝑡 and 𝑟𝑡 are the ranks within 𝑥 and 𝑦 of 𝑥𝑡 
and 𝑦𝑡 respectively: 

 

𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =
∑ (𝑞𝑡 − �̅�)(𝑟𝑡 − �̅�)
𝑛
𝑡=1

√∑ (𝑞𝑡 − �̅�)
2𝑛

𝑡=1 . ∑ (𝑟𝑡 − �̅�)
2𝑛

𝑡=1

   𝑤ℎ𝑒𝑟𝑒 �̅� =
1

𝑛
∑𝑞𝑡

𝑛

𝑡=1

 𝑒𝑡𝑐. 

 
- Kendall’s tau, where computation is taken over all 𝑖 = 1,2,… , 𝑛 and 𝑗 = 1,2,… , 𝑛 with 𝑖 ≠ 𝑗 

and (for the moment ignoring ties) a concordant pair is a case where (𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 >

𝑦𝑗) 𝑜𝑟 (𝑥𝑖 < 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 < 𝑦𝑗) and a discordant pair is a case where (𝑥𝑖 > 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 <

𝑦𝑗) 𝑜𝑟 (𝑥𝑖 < 𝑥𝑗 𝑎𝑛𝑑 𝑦𝑖 > 𝑦𝑗): 

 

http://www.nematrian.com/MnCorrelation.aspx
http://www.nematrian.com/MnFisher.aspx
http://www.nematrian.com/MnSpearmanRankCorrelation.aspx
http://www.nematrian.com/MnKendalTauCoefficient.aspx
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𝜏 =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

1
2
𝑛(𝑛 − 1)

 

 
There are various possible ways of handling ties in these two non-parametric measures of 
correlation (ties should not in practice arise if the random variables really are continuous). 
 
5.8 Analysis of variance 
 
Given a single factor normal model 
 

𝑦𝑖𝑗~𝑁(𝜇 + 𝑞𝑖, 𝜎
2),    𝑖 = 1,2, … , 𝑘     𝑗 = 1,2, … , 𝑛𝑖 

 

where 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1  with ∑ 𝑛𝑖𝑞𝑖 = 0

𝑘
𝑖=1 . 

 
Variance estimate: 
 

�̂�2 =
𝑆𝑆𝑅
𝑛 − 𝑘

 

 
Under the null hypothesis given above 
 

𝑆𝑆𝐵 (𝑘 − 1)⁄

𝑆𝑆𝑅 (𝑛 − 𝑘)⁄
~𝐹𝑘−1,𝑛−𝑘 

 
where: 

𝑆𝑆𝑇 =∑∑(𝑦𝑖𝑗 − �̅�)
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

=∑∑𝑦𝑖𝑗
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

−
�̅�2

𝑛
 

𝑆𝑆𝐵 =∑𝑛𝑖(�̅�𝑖 − �̅�)
2

𝑘

𝑖=1

=∑
�̅�𝑖
2

𝑛𝑖

𝑘

𝑖=1

−
�̅�2

𝑛
 

𝑆𝑆𝑅 = 𝑆𝑆𝑇 − 𝑆𝑆𝐵 

�̅�𝑖 =
1

𝑛𝑖
∑𝑦𝑖𝑗

𝑛𝑖

𝑗=1

      𝑎𝑛𝑑     �̅� =
1

𝑛
∑∑𝑦𝑖𝑗

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 

 
5.9 Bayesian priors and posteriors 
 
Posterior and prior distributions are related as follows: 
 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑃𝑟𝑖𝑜𝑟 × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 
i.e. 

𝑝(𝜃|𝑥) ∝ 𝑝(𝜃) × 𝑝(𝑥|𝜃) 
 
For example, if 𝑥 is a random sample of size 𝑛 from a 𝑁(𝜇, 𝜎2) where 𝜎2 is known and the prior 

distribution for 𝜇 is 𝑁(𝜇0, 𝜎0
2) then  the posterior distribution for 𝜇 is: 

 
𝜇|𝑥~𝑁(𝜇∗, 𝜎∗

2) 
 
where 𝜇∗ is ‘credibility weighted’ as follows: 

http://www.nematrian.com/MnDAAnovaOneAnalysis.aspx
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𝜇∗ =

(
𝑛�̅�
𝜎2
+
𝜇0
𝜎0
2)

(
𝑛
𝜎2
+
1
𝜎0
2)

 

and 

𝜎∗
2 =

1

(
𝑛
𝜎2
+
1
𝜎0
2)

 

 
 

6. Monte Carlo methods 
[ERMFormulaBookMonteCarloMethods] 
 
6.1 Creation of normal random variables  
 
Box-Muller: if 𝑥1 and 𝑥2 are independent standard uniform random variables, i.e. come from 𝑈(0,1) 

and 𝑟 = √−2 log 𝑥1 then 𝑥1 = 𝑟 cos(2𝜋𝑥2) and 𝑢2 = 𝑟 sin(2𝜋𝑥2) are independent standard 

normal random variables. 
 

Polar method: if 𝑢1 and 𝑢2 are independent random variables from 𝑈(−1,1), 𝑟2 = 𝑢1
2 + 𝑢2

2 and 𝑠 =

√−2 log(𝑟2) 𝑟2⁄  then 𝑥1 = 𝑠𝑢1 and 𝑥2 = 𝑠𝑢2 are independent standard normal random variables. 
 
6.2 Cholesky decomposition 
 
If 𝐴 has real entries, is symmetric and is positive definite then it can be decomposed as 𝐴 = 𝐿𝐿𝑇 
where 𝐿 is a lower triangular matrix with strictly positive diagonal entries and 𝐿𝑇 is its transpose. The 
entries of 𝐿 are: 
 

𝐿𝑗,𝑗 = √𝐴𝑗,𝑗 −∑𝐿𝑗,𝑘
2

𝑗−1

𝑘=1

                     𝐿𝑖,𝑗 =
1

𝐿𝑗,𝑗
(𝐴𝑖,𝑗 −∑𝐿𝑖,𝑘𝐿𝑗,𝑘

𝑗−1

𝑘=1

)    𝑓𝑜𝑟 𝑖 > 𝑗 

 
 

7. Interest rates and bond pricing 
[ERMFormulaBookIRBondPricing] 
 
7.1 Spot and forward rates 
 
Suppose 𝑃(𝑡) is the price at time 0 of a zero-coupon bond that pays 1 at time 𝑡, 𝑠(𝑡) is the spot rate 
for the period (0, 𝑡), i.e. 0 to 𝑡, and 𝑓(𝑡) is the instantaneous forward rate at time 0 for time 𝑡 
(where 𝑠(𝑡) and 𝑓(𝑡) are both continuously compounded) Then: 
 

𝑃(𝑡) = 𝑒−𝑡𝑠(𝑡) = exp(−𝑡𝑠(𝑡)) = exp(−∫ 𝑓(𝑢)𝑑𝑢
𝑡

0

) 

𝑠(𝑡) =
1

𝑡
log𝑃(𝑡) 

𝑓(𝑡) = −
𝑑

𝑑𝑡
log𝑃(𝑡) 

 

http://www.nematrian.com/ERMFormulaBookMonteCarloMethods.aspx
http://www.nematrian.com/MnProbDistRandArray.aspx
http://www.nematrian.com/MnCholeskyDecomposition.aspx
http://www.nematrian.com/ERMFormulaBookIRBondPricing.aspx
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7.2 Duration, modified duration, (gross) redemption yield (yield to maturity), credit spread, 
option-adjusted spread, annualisation conventions  

 
If a bond gives the holder entitlements to cash flows 𝐶𝑡 at time 𝑡 (and is assumed not to be subject 
to default risk) and has a ‘dirty price’, 𝑉, then its (gross) redemption yield (yield to maturity) is the 
(sensible) rate of interest that equates 𝑉 with its present value, i.e.: 
 

𝑃𝑉 =∑
𝐶𝑡

(1 + 𝑖)𝑡
𝑡

 

 
Its duration is then 𝑑𝑢𝑟 = (1 𝑉⁄ )∑ 𝑡𝐶𝑡 (1 + 𝑖)

𝑡⁄𝑡  and its modified duration is 𝑚𝑜𝑑 𝑑𝑢𝑟 =
−(1 𝑉⁄ ) 𝑑𝑉 𝑑𝑖⁄ = 𝑑𝑢𝑟 (1 + 𝑖)⁄ . 𝑉 ×𝑚𝑜𝑑 𝑑𝑢𝑟 is almost exactly the same as its PV01, also called 
DV01. 
 
Its credit spread is the difference between its (gross) redemption yield and the corresponding yield 
on a reference security, often a corresponding government security providing the same cash flows in 
the event of non-default. The option-adjusted spread is the corresponding spread taking into 
account optionality in the bond in question and/or in the reference bond. 
 

Interest rates may be expressed as annual rates, 𝑖, semi-annual rates, 𝑖(2), quarterly rates, 𝑖(4), 

monthly rates, 𝑖(12) or even continuously compounded rates, 𝛿, where: 
 

1 + 𝑖 = (1 +
𝑖(2)

2
)

2

= (1 +
𝑖(4)

4
)

4

= (1 +
𝑖(12)

12
)

12

= lim
𝑛→∞

(1 +
𝛿

𝑛
)
𝑛

= exp𝛿 

 
The quotation convention of a bond (e.g. ACT/ACT) defines the amount of accrued interest payable 
when a bond is bought or sold in between coupon dates. 
 
 

8. Financial derivatives 
[ERMFormulaBookFinancialDerivatives] 
 
8.1 Forward prices 
 
The no arbitrage (fair) forward price which parties should agree to exchange a security at time 𝑇 if it 
is priced 𝑆0 now and is entitled to fixed income of present value 𝑄 in the meantime is: 
 

𝐹 = (𝑆0 − 𝐼)𝑒
𝑟𝑇 

 
where 𝑟 is the interest rate (continuously compounded). 
 
If instead it pays dividends at a rate 𝑞 (continuously compounded) then the forward prices is: 
 

𝐹 = 𝑆0𝑒
(𝑟−𝑞)𝑇 

 
8.2 Black-Scholes formulae 
 
Geometric Brownian motion for a security (stock) price 𝑆𝑡 involves 
 

http://www.nematrian.com/AnnualisationConventions.aspx
http://www.nematrian.com/ERMFormulaBookFinancialDerivatives.aspx
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𝑑𝑆𝑡
𝑆𝑡

= 𝑑(log 𝑆𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑧 

 
The partial differential equation satisfied by values of payoffs involving such security prices is: 
 

𝜕𝑉

𝜕𝑡
+ (𝑟 − 𝑞)𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
= 𝑟𝑉 

 
where 𝑟 is the interest rate, 𝑞 is the dividend yield (both continuously compounded) and 𝜎 is the 
security price volatility. 
 
Garman-Kohlhagen formulae for values at time 𝑡 of European-style put and call options with strike 
price 𝐾maturing at time 𝑇: 
 

Call option 𝐶𝑡 = 𝑆𝑡𝑒
−𝑞(𝑇−𝑡)𝑁(𝑑1) − 𝐾𝑒

−𝑟(𝑇−𝑡)𝑁(𝑑2) 
 

Put option 𝑃𝑡 = 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(−𝑑2) − 𝑆𝑡𝑒

−𝑞(𝑇−𝑡)𝑁(−𝑑1) 
 
where 
 

𝑑1 =
log(𝑆𝑡 𝐾⁄ ) + (𝑟 − 𝑞 + 𝜎2 2⁄ )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

𝑑2 =
log(𝑆𝑡 𝐾⁄ ) + (𝑟 − 𝑞 − 𝜎2 2⁄ )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
= 𝑑1 − 𝜎√𝑇 − 𝑡 

 

We then have 𝐶𝑡 + 𝐾𝑒
−𝑟(𝑇−𝑡) = 𝑃𝑡 + 𝑆𝑡𝑒

−𝑞(𝑇−𝑡), i.e. put-call parity. 
 
Technically the Black-Scholes formulae are special cases of the Garman-Kohlhagen formulae for 
stocks that pay no dividend, i.e. have 𝑞 = 0, although in practice the two names are normally 
treated as interchangeable. 
 
The Black-Scholes option pricing formulae can also be derived as the limit of binomial trees (lattices) 
with movements 𝑆 → 𝑆(1 + 𝑢) or 𝑆 → 𝑆(1 − 𝑑) with an up-step probability 𝑝𝑢𝑝 =

(𝑒𝑟∆𝑡 − 𝑑) (𝑢 − 𝑑)⁄  and a down-step probability 𝑝𝑑𝑜𝑤𝑛 = 1 − 𝑝𝑢𝑝 where: 

 

𝑢 ≈ 𝑒𝜎√∆𝑡+𝑞∆𝑡   𝑎𝑛𝑑   𝑑 ≈ 𝑒−𝜎√∆𝑡+𝑞∆𝑡 
 
 

9. Risk measures 
[ERMFormulaBookRiskMeasures] 
 
9.1 Value-at-Risk (VaR) 
 
If 𝑋 is a (continuous) random variable (e.g. an outcome) with pdf 𝑝(𝑥) then the Value-at-Risk at 
confidence level 𝛼 (e.g. 95%, 99%, 99.5%) is defined as: 
 

𝑉𝑎𝑅𝛼(𝑋) = 𝑘    𝑤ℎ𝑒𝑟𝑒 ∫ 𝑝(𝑥)𝑑𝑥

−𝑘

−∞

= 1 − 𝛼 

 

http://www.nematrian.com/MnBSCallPrice.aspx
http://www.nematrian.com/MnBSPutPrice.aspx
http://www.nematrian.com/BlackScholesGreeks.aspx
http://www.nematrian.com/ERMFormulaBookRiskMeasures.aspx
http://www.nematrian.com/MnProbDistValueAtRisk.aspx
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If 𝑋 has cdf 𝐹(𝑥) with an inverse cdf, i.e. quantile function 𝐹−1(𝑞) then 𝑉𝑎𝑅𝛼(𝑋) = −𝐹
−1(𝛼). 

Sometimes signs are inverted and 𝛼 and 1 − 𝛼 are swapped around when defining 𝑉𝑎𝑅(𝛼). 
 
The relative VaR of 𝑋 relative 𝑌, e.g. of an active equity portfolio versus a benchmark portfolio is 
usually taken to mean the VaR of the random variable 𝑍 = 𝑋 − 𝑌. However, for relative returns 
there are several alternative ways in which we can define the equivalent of 𝑋 − 𝑌, see definition of 
tracking error. 
 
9.2 Tail Value-at-Risk (TVaR) 
 
The Tail Value-at-Risk (also called the conditional Value-at-Risk, CVaR) is generally defined as the 
value of the loss conditional on it being worse than the VaR at confidence level 𝛼, so is defined as: 
 

𝑇𝑉𝑎𝑅𝛼(𝑋) = 𝐸(−𝑋|𝑋 ≤ −𝑉𝑎𝑅𝛼) = −
1

1 − 𝛼
∫ 𝑥𝑝(𝑥)𝑑𝑥

−𝑉𝑎𝑅𝛼

−∞

 

 
A coherent risk measure is one that satisfies subadditivity, monotonicity, homogeneity and 
translational invariance. If losses follow a continuous probability distribution then TVAR is a 
coherent risk measure. 
 
Occasionally TVaR (less commonly CVaR) is ascribed the same meaning as expected shortfall, in 
which case the 1 (1 − 𝛼)⁄  factor is ignored, or is defined relative to some specific limit – 𝑘 that in 
effect defines the 𝛼 to be used in the above formula. 
 
9.3 Expected shortfall (ES) 
 
The expected shortfall, ES, and expected policyholder deficit, EPD are usually defined as follows: 
 
Expected policyholder deficit: 
 

𝐸𝑃𝐷(𝑊) = −𝐸((𝑋 −𝑊)𝐼(𝑋 < 𝑊)) = − ∫(𝑥 −𝑊)𝑝(𝑥)𝑑𝑥

𝑊

−∞

 

 

where 𝐼(𝑋 < 𝑊) = {
1, 𝑋 < 𝑊
0, 𝑋 ≥ 𝑊

 and 𝑊 is often but not always the policyholder wealth 

 
Expected shortfall: 
 

𝐸𝑆 = − ∫𝑥𝑝(𝑥)𝑑𝑥

0

−∞

 

 
Or more generally the expected shortfall below some trigger level 𝑄 is  

𝐸𝑆(𝑄) = − ∫ 𝑥𝑝(𝑥)𝑑𝑥

𝑄

−∞

 

 
Sometimes expected shortfall is ascribed the same meaning as is given above for TVaR. 
 
9.4 Expected worst outcome (EWO) 

http://www.nematrian.com/MnProbDistTailValueAtRisk.aspx
http://www.nematrian.com/ERMGlossaryExpectedShortfall.aspx
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The expected value of the worst outcome in 𝑁 (non-overlapping) observations is: 
 

𝐸𝑊𝑂(𝑁) = ∫ 𝑥(1)𝑑𝐹
𝑁

∞

−∞

 

 
where the integral is 𝑁-dimensional, 𝑥(1) = min(𝑥1, … , 𝑥𝑛) and the joint distribution 𝐹𝑁 involves 𝑁 

independent marginal distributions each with pdf 𝑝(𝑥). This type of risk measure can also be 
extended to, say, 𝑛’th worst outcome, 𝑛 ≤ 𝑁 with 𝐸𝑊𝑂(𝑁) as defined above being the special case 
where 𝑛 = 1. 
 
9.5 Tracking error (TE) 
 
If 𝑋 is a random variable (e.g. a portfolio return) with (assumed forward looking) pdf 𝑝(𝑥) then its 
ex-ante tracking error (if it exists) is 𝜎 where 
 

𝜎2 = 𝑣𝑎𝑟(𝑋) 
 
Nearly always 𝑋 is here the relative return of a portfolio 𝐩 = (𝑝1, … , 𝑝𝑛)

𝑇 of exposures versus a 
benchmark portfolio 𝐛 = (𝑏1, … , 𝑏𝑛)

𝑇 and the tracking error is then normally expressed as a 
percentage of the total portfolio value. The tracking error of 𝐩  versus 𝐛 is then 𝜎(𝐩, 𝐛)2 (more 
precisely, 𝜎𝑡(𝐩, 𝐛)

2 for a time period indexed by 𝑡) where if the future returns on the 𝑖’th instrument 
during this are 𝑟𝑖,𝑡 and relative returns are calculated arithmetically (i.e. using  an arithmetic 

difference): 
 

𝜎𝑡(𝐩, 𝐛)
2 = 𝑣𝑎𝑟 (∑𝑝𝑖𝑟𝑖,𝑡

𝑛

𝑖=1

−∑𝑏𝑖𝑟𝑖,𝑡

𝑛

𝑖=1

) = 𝑣𝑎𝑟 (∑(𝑝𝑖 − 𝑏𝑖)𝑟𝑖,𝑡

𝑛

𝑖=1

) = 𝑣𝑎𝑟 (∑𝑎𝑖𝑟𝑖,𝑡

𝑛

𝑖=1

) = 𝜎𝑡(𝐚)
2 

 
where 𝐚 is the vector of active positions. 
 
If the 𝑟𝑖(𝑡) have covariance matrix 𝐕 with elements 𝑉𝑖𝑗 then 𝜎(𝐚)2 = 𝐚𝑇𝐕𝐚. 

 
However, returns compound rather than add through time so for non-infinitesimal time period 
lengths there are alternative and potentially preferable ways of defining relative returns, including (if 
we are trying to calculate the return 𝑟1 relative to 𝑟2, each expressed as fractions) using geometric 
relative returns, i.e. 𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = (1 + 𝑟1) (1 + 𝑟2)⁄ − 1, or logarithmic relative returns, i.e. 

𝑟𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = log(1 + 𝑟1) − log(1 + 𝑟2) rather than arithmetic relative returns 

𝑟𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 = 𝑟1 − 𝑟2. 
 
If a factor structure is assumed for the 𝑟𝑖,𝑡 then this normally involves assuming that: 
 

𝑟𝑖,𝑡 = 𝛼𝑖 +∑𝛽𝑖,𝑗𝑥𝑗,𝑡
𝑘

+ 𝜀𝑖,𝑡 

 
where 𝛽𝑖,𝑗 is the exposure (beta) of the 𝑖’th instrument to the 𝑗’th factor and 𝜀𝑖,𝑡 are residual 

(idiosyncratic) components. 
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A portfolio described by a vector of (active) weights 𝐚 then has an expected return of 𝐚. 𝛍 and an 

(expected) future tracking error as follows, where 𝛽 is the matrix formed by 𝛽𝑖,𝑗 and �̃� is the 

covariance matrix between the factors 
 

𝜎2 = 𝐚𝑇(𝛃𝑇�̃�𝛃)𝐚 + 𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑟𝑎𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

       = (𝛃𝐚)𝑇�̃�(𝛃𝐚) + 𝑖𝑑𝑖𝑜𝑠𝑦𝑛𝑐𝑟𝑎𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 
 
If 𝑇 is the length of time (time horizon) to which the ex-ante tracking error relates and returns in 
individual time periods of length 𝑡 are assumed to be independent of each other then (assuming e.g. 
we measure returns logarithmically and that the portfolio and benchmark remain unchanged 
through time) we can apply the square-root of time adjustment to derive ex ante tracking errors 
applicable to different time periods, i.e.: 
 

𝜎𝑇 = 𝜎𝑡√(𝑇 𝑡⁄ ) 
 
A portfolio’s ex-post tracking error is derived from past observed values of its returns and might then 
be either a sample standard deviation or (perhaps less accurately, but slightly lower) the 
corresponding ‘population’ standard deviation. 
 
9.6 Drawdown 
 
If a portfolio has exhibited past returns 𝑟1, … , 𝑟𝑛 over the previous 𝑛 time periods (which could be 
days, weeks, months, years etc., where 𝑡 = 1 is earlier than 𝑡 = 2 etc.) then the portfolio’s 
drawdown at time 𝑡 is usually defined to be 𝑟𝑡 (if negative). Its maximum drawdown is usually 
defined as min( 𝑟1, … , 𝑟𝑡) (if negative). Its cumulative maximum drawdown (i.e. peak-to-trough) at 
time 𝑡 is usually defined by creating an index 𝐼𝑡 such that 𝐼𝑡 = 𝐼𝑡−1(1 + 𝑟𝑡) and then determining at 
time 𝑡 the maximum of (𝐼𝑢−𝑘 − 𝐼𝑢) 𝐼𝑢−𝑘⁄  for all 𝑢 ≤ 𝑡 and 𝑘 < 𝑢. 
 
9.7 Marginal VaR 
 
The overall outcome of a portfolio of exposures containing a (constant) amount 𝑎𝑖  of exposure to 
the 𝑖’th risk where each risk involves an random outcome 𝑋𝑖  (technically 𝑋𝑖  is the value ascribed to 
the random outcome) is 𝑋 = ∑ 𝑎𝑖𝑋𝑖𝑖 . Strictly speaking combining exposures in this manner requires 
that the way in which we ascribe a financial value to an outcome satisfies the axioms of uniqueness, 
additivity and scalability, i.e. that 𝑉(𝑋), the value we ascribe to an outcome should be unique and 

should satisfy 𝑉(𝑘(𝐴 + 𝐵)) = 𝑘(𝑉(𝐴) + 𝑉(𝐵)). 

 
The VaR of such a portfolio with confidence level 𝛼 is 𝑉𝑎𝑅𝛼(𝑋) = 𝑉𝑎𝑅𝛼(∑ 𝑎𝑖𝑋𝑖𝑖 ). 
 
The marginal VaR with confidence level 𝛼 of the 𝑖’th exposure in such a portfolio is: 
 

𝑀𝑉𝑎𝑅𝛼
(𝑖) =

𝜕

𝜕𝑎𝑖
(𝑉𝑎𝑅𝛼 (∑𝑎𝑖𝑋𝑖

𝑖

)) 

 

The contribution to overall VaR of the 𝑖’th exposure is then 𝑎𝑖𝑀𝑉𝑎𝑅𝛼
(𝑖). 

 
If the outcomes are Gaussian (i.e. multivariate normal, say 𝑚 exposures with 𝐗 =
(𝑋1, … , 𝑋𝑚)

𝑇~𝑁(𝛍, 𝐕) then 𝑋 = ∑ 𝑎𝑖𝑋𝑖𝑖 ~𝑁(𝜇, 𝜎2) where: 

𝜇 =∑ 𝑎𝑖𝜇𝑖
𝑚

𝑖=1
= 𝐚.𝛍 
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𝜎2 =∑∑𝑎𝑖𝑎𝑗𝑉𝑖𝑗

𝑚

𝑗=1

𝑚

𝑖=1

= 𝐚𝑇𝐕𝐚 

 

Here 𝐚 = (𝑎1,… , 𝑎𝑚)
𝑇

 and 𝛍 = (𝜇1,… , 𝜇𝑚)
𝑇

. Given the properties of the normal distribution 

 
𝑉𝑎𝑅𝛼(𝑋) = 𝜇 +  𝜎𝑁

−1(1 − 𝛼) 
 
As tracking error is a special case of VaR (with assumed normal underlying distribution and 𝜇 = 0, 
𝑁−1(1 − 𝛼) = 1) we can likewise define the marginal tracking error and contribution to tracking 
error from an individual exposure. 
 
9.8 Incremental VaR 
 
The incremental VaR with confidence level 𝛼 of the 𝑖’th exposure in such a portfolio is: 
 

𝐼𝑉𝑎𝑅𝛼
(𝑖)
= 𝑉𝑎𝑅𝛼 (∑𝑎𝑖𝑋𝑖

𝑖

) − 𝑉𝑎𝑅𝛼 (∑ 𝑎𝑗𝑋𝑗
𝑗,𝑗≠𝑖

) 

 
9.9 Estimating VaR 
 
If the observations are normally distributed then 𝑉𝑎𝑅𝛼 may be estimated approximately in a 

parametric manner using 𝑉𝑎�̂�𝛼 = �̂� + �̂�𝑁
−1(1 − 𝛼). Alternatively it can be estimated 

(approximately) in a non-parametric manner (if the data does not exhibit temporal dependencies) by 
taking the observations 𝑌1, … , 𝑌𝑛, say, reordering them so that 𝑌(1) ≤ ⋯ ≤ 𝑌(𝑛), say, identifying the 

𝑟’th order statistic, where 𝑟 is an integer between 1 and 𝑛, and estimating the VaR using the 𝑘’th 
order statistic where (𝑘 − 1) 𝑛⁄ < (1 − 𝛼) ≤ 𝑘 𝑛⁄ . Using a binomial distribution, the variance of the 
𝑟’th order statistic is approximately as follows (where 𝑓(𝑟) is the pdf at 𝑦(𝑟) and 𝑝 is the probability of 

outcome) meaning that estimating the standard error of this non-parametric statistic requires us to 
estimate 𝑓(𝑟): 

 

𝑣𝑎𝑟(𝑦(𝑟)) ≈
𝑝(1 − 𝑝)

𝑛𝑓(𝑟)
2  

 
 

10. Portfolio optimisation 
[ERMFormulaBookPortfolioOptimisation] 
 
10.1 Mean-variance portfolio optimisation 
 
If there are 𝑛 asset categories then a (one period) mean-variance efficient portfolio, 𝐱 =
(𝑥1, … , 𝑥𝑛)

𝑇 where 𝑥𝑖 is the amount (or weight) invested in the 𝑖’th asset, given a benchmark, 𝐛 =
(𝑏1, … , 𝑏𝑛)

𝑇, assumed future (one period) mean returns  on each asset, 𝐫 = (𝑟1, … , 𝑟𝑛)
𝑇, and an 

assumed covariance matrix between the (one period) returns on different assets, 𝐕, is a portfolio 
that maximises the utility function, 𝑈(𝐱) for some risk aversion parameter, 𝜆, subject to relevant 
constraints on the 𝑥𝑖, where: 
 

𝑈(𝐱) = 𝐫. 𝐱 − 𝜆((𝐱 − 𝐛))
𝑇
𝐕(𝐱 − 𝐛) 

 

http://www.nematrian.com/ERMFormulaBookPortfolioOptimisation.aspx
http://www.nematrian.com/ConstrainedQuadraticOptimisation.aspx
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The constraints that are applied are usually linear, i.e. of the form 𝐀𝐱 ≤ 𝐪 which if 𝐪 is an 𝑚 
dimensional vector is understood as meaning that there are 𝑚 constraints each of the form 
∑ 𝐴𝑖𝑗𝑥𝑖
𝑛
𝑖=1 ≤ 𝑞𝑗. In such a formulation, equality constraints, including that the amounts invested add 

up to the total portfolio value (or the weights add to unity), can be written as two inequality 
constraints, e.g. ∑ 𝑥𝑖

𝑛
𝑖=1 ≤ 1 and ∑ (−1)𝑥𝑖

𝑛
𝑖=1 ≤ −1 combined. 

 
The implied alphas with a mean-variance risk-return model given a portfolio 𝐱 and benchmark 𝐛 are 
the mean returns that need to be assumed for the different asset categories for 𝐱 to be mean-
variance optimal for some value of 𝜆. They can only meaningfully be determined for assets whose 
weights in the portfolio are not constrained (other than by the constraint that weights add to unity). 
They are then 𝛂 = (𝛼1, … , 𝛼𝑛)

𝑇 where 𝛂 = 𝑐1 + 𝑐2𝜆𝐕(𝐱 − 𝐛) where 𝑐1 and 𝑐2 are arbitrary scalar 
constants. 
 
10.2 Capital Asset Pricing Model (CAPM) 
 
The security market line is: 
 

𝐸𝑖 − 𝑟 = 𝛽𝑖(𝐸𝑀 − 𝑟) 
 
where 𝛽𝑖 = 𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑀) 𝑣𝑎𝑟(𝑅𝑀)⁄  
 
The capital market line (for efficient portfolios) is: 
 

𝐸𝑃 − 𝑟 = (𝐸𝑀 − 𝑟)
𝜎𝑀
𝜎𝑀

 

 
 

11. Extreme value theory 
[ERMFormulaBookExtremeValueTheory] 
 
See also here. 
 
11.1 Maximum domain of attraction (MDA) 
 
Suppose that i.i.d. random variables 𝑋𝑖  have cdf 𝐹(𝑥). Suppose also that there exist sequences {𝑐𝑖} 
and {𝑑𝑖} and a cdf 𝐻(𝑥) such that: 
 

lim
𝑛→∞

𝑃𝑟 (
𝑀𝑛 − 𝑑𝑛
𝑐𝑛

≤ 𝑥) = 𝐻(𝑥) 

 
where 𝑀𝑛 is the random variable corresponding to the block maximum for blocks of such variables 
of length 𝑛, i.e. each (independent) realisation of the series {𝑋𝑖} is used to create a realisation of 𝑀𝑛 
given by 𝑀𝑛 = max(𝑋1, … , 𝑋𝑛). 
 
Then 𝐹 is said to be in the maximum domain of attraction (MDA) of 𝐻, written 𝐹 ∈ 𝑀𝐷𝐴(𝐻) 
 
11.2 Fisher-Tippett theorem 
 
If 𝐹 ∈ 𝑀𝐷𝐴(𝐻) where 𝐻 is a non-degenerate cdf then 𝐻 must be a Generalised Extreme Value 
(GEV) distribution. 
 

http://www.nematrian.com/ERMFormulaBookExtremeValueTheory.aspx
http://www.nematrian.com/ExtremeValueTheory.aspx
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If 𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉,𝜇,𝜎) where 𝐻 = 𝐺𝐸𝑉(𝜉, 𝜇, 𝜎) then by replacing 𝑐𝑖 by �̃�𝑖 = 𝜎𝑐𝑖  and 𝑑𝑖  by �̃�𝑖 = 𝑑𝑖 +

𝜇𝑐𝑖 we see that 𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉) where 𝐻 = 𝐺𝐸𝑉(𝜉). 

 
11.3 The Pickands-Balkema-de Haan (PBH) theorem 
 
Let 𝑥𝐹 be the maximum limiting value of the random variable 𝑋. Then the PBH theorem states that 
we can find a function 𝛽(𝑢) such that 
 

lim
𝑢→𝑥𝐹

( sup
0≤𝑦<𝑥𝐹−𝑢

|𝐹𝑢(𝑦) − 𝐺𝜉,𝛽(𝑢)(𝑦)|) = 0 

 

if and only if that 𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉) 

 
11.4 Estimating tail distributions 
 
Suppose that the underlying loss distribution is in the maximum domain of attraction of the Frechét 
distribution and it has a tail of the form: �̅�(𝑥) = 𝐿(𝑥)𝑥−𝛼 for some slowly varying 𝐿(𝑥), where 
�̅�(𝑥) = 1 − 𝐹(𝑋). Then the Hill estimator for the (upper) tail index, given 𝑛 ordered observations, 
𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛), assuming that the (upper) tail contains 𝑘 entries is: 

 

�̂�𝑘,𝑛 = (
1

𝑘
∑(log𝑋(𝑛−𝑗+1) − log𝑋(𝑛−𝑘))

𝑘

𝑗=1

)

−1

 

 
 

12. Copulas 
[ERMFormulaBookCopulas] 
 
12.1 Definition 
 
A copula is a multivariate cumulative distribution function for an 𝑛 dimensional random vector 𝑈 =
(𝑈1, … , 𝑈𝑛)

𝑇 in the unit hypercube ([0,1]𝑛) that has uniform marginals, 𝑈𝑖, each distributed 
according to 𝑈(0,1) but not in general independent of each other. Let 𝑢 = (𝑢1, … , 𝑢𝑛)

𝑇 also be 
restricted to the unit hypercube [0,1]𝑛. Then a copula is defined as a function of the form: 
 

𝐶(𝑢) = 𝐶(𝑢1, … , 𝑢𝑛) = 𝑃𝑟(𝑈1 ≤ 𝑢1, … , 𝑈𝑛 ≤ 𝑢𝑛) 
 
Equivalently 𝐶(𝑢1, … , 𝑢𝑛) is the joint cumulative distribution function for the random vector 𝑈 ∈
[0,1]𝑛. 
 
The copula density (for a continuous copula) is the pdf for which the cdf is the copula. 
 
12.2 Properties 
 
In the bivariate case (𝑛 = 2) for a general function 𝐶(𝑢1, 𝑢2) to be a copula it must satisfy the 
following properties: 
 
1. 𝐶(𝑢, 1) = 𝑢 = 𝐶(1, 𝑢) for all 0 ≤ 𝑢 ≤ 1 
2. 𝐶(𝑢1, 𝑢2) must be increasing in both 𝑢1 and 𝑢2 

http://www.nematrian.com/ERMFormulaBookCopulas.aspx
http://www.nematrian.com/CopulasIntro.aspx
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3. 𝐶(𝑏1, 𝑏2) − 𝐶(𝑎1, 𝑏2) − 𝐶(𝑏1, 𝑎2) + 𝐶(𝑎1, 𝑎2) ≥ 0 for all 0 ≤ 𝑎1 < 𝑏1 ≤ 1 and 0 ≤ 𝑎2 <
𝑏2 ≤ 1 
4. 𝐶(𝑢1, 𝑢2) ≤ min(𝑢1, 𝑢2) 
5. 𝐶(𝑢1, 𝑢2) ≥ max(𝑢1 + 𝑢2 − 1,0) 
 
12.3 Sklar’s theorem 
 
If 𝐹 is a joint (cumulative) distribution with marginal cdf’s 𝐹1, 𝐹2, … , 𝐹𝑛 then there exists a copula 𝐶 
which maps the unit hypercube [0,1]𝑛 onto the interval [0,1] such that for all 𝑥1, … , 𝑥𝑛 we have: 
 

𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛)) 

 
Moreover, if the 𝐹𝑖 are continuous functions then the copula is unique and 
 

𝐶(𝑢1, … , 𝑢𝑛) = 𝐹(𝐹1
−1(𝑢1),… , 𝐹𝑛

−1(𝑢𝑛)) 

 
Conversely, suppose 𝐶(𝑢1, … , 𝑢𝑛) is a copula and 𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛) are univariate cdf’s. Then the 

function 𝐹(𝑥1, … , 𝑥𝑛) = 𝐶(𝐹1(𝑥1),… , 𝐹𝑛(𝑥𝑛)) is a joint distribution function with marginal cdf’s 

𝐹1, 𝐹2, … , 𝐹𝑛. 
 
12.4 Example copulas 
 
The Archimedean family involves copulas of the following form, where 𝜑: [0,1] → [0,∞), 𝜑(0) = ∞, 

𝜑(1) = 0, 𝜑 is continuous and strictly decreasing and (−1)𝑘 𝑑𝑘𝜑−1(𝑡) 𝑑𝑡𝑘⁄ ≥ 0   ∀𝑘 = 0,1,… 
 

𝐶(𝑢1, … , 𝑢𝑛) = 𝜑
−1(𝜑(𝑢1) + ⋯+𝜑(𝑢𝑛)) 

 

Special cases include the Clayton copula which has 𝜑(𝑡) = 𝑡−𝜃 − 1 (for some suitable value of 𝜃) 
and the independence or product copula which has 𝜑(𝑡) = − log 𝑡. 
 
12.5 Tail dependence 
 
If 𝑋1 and 𝑋2 are continuous random variables with copula 𝐶(𝑢1, 𝑢2) then their coefficient of (joint 
lower) tail dependence (if it exists) is: 
 

𝜆 ≡ lim
𝑢→0

𝐶(𝑢, 𝑢)

𝑢
 

 
For continuous random variables 𝑋 and 𝑌 each with lower limit of −∞ the coefficient of (lower) tail 
dependence is also: 
 

𝜆 = lim
𝑧→−∞

𝑃𝑟(𝑌 < 𝑧|𝑋 < 𝑧) = lim
𝑧→−∞

𝑃𝑟(𝑌 < 𝑧, 𝑋 < 𝑧)

𝑃𝑟(𝑋 < 𝑧)
 

 
12.6 Simulating copulas 
 
Correlated Gaussian (i.e. multivariate normal) random variables (i.e. random variables with a 
Gaussian copula and Gaussian marginals) can be generated using Cholesky decomposition. 
 

http://www.nematrian.com/ArchimedeanCopulas.aspx
http://www.nematrian.com/ClaytonCopula.aspx
http://www.nematrian.com/IndependenceCopula.aspx
http://www.nematrian.com/MnCholeskyDecomposition.aspx
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For random variables that have a Gaussian copula but non-normal marginal (with cdfs 𝐹1, … , 𝐹𝑛) we 
can generate a vector (𝑥1, … , 𝑥𝑛)

𝑇 of correlated Gaussian random variables as above and then 

transform as per 𝑦𝑖 = 𝐹𝑖
−1(𝑥𝑖). 

 
In general, for non-Gaussian copulas we may need to generate a vector of unit uniform random 
variables (𝑢1, … , 𝑢𝑛)

𝑇 and then transform them using 𝑢1
∗ = 𝑢1, 𝑢2

∗ = 𝐶−1(𝑢2|𝑢1) etc. 
 
 

13. Miscellaneous 
[ERMFormulaBookMiscellaneous] 
 
13.1 Combining solvency capital requirements using correlations 
 
A correlation based combination of individual solvency capital requirements involves a formula 
along the lines of: 
 

𝑆𝐶𝑅𝑇𝑜𝑡 = √∑𝑐𝑖𝑗 × 𝑆𝐶𝑅𝑖 × 𝑆𝐶𝑅𝑗
𝑖,𝑗

 

 
 
13.2 Credit risk modelling 
 

A single factor credit portfolio model generally assumes 𝑧𝑘 = 𝛼𝑘𝑥 + 𝜀𝑘√1− 𝛼𝑘
2 where 𝑓 is the 

(standardised) factor return/movement, 𝛼𝑘 is the exposure of the 𝑘’th obligor to that factor and 𝜀𝑘 
is the idiosyncratic noise term for that obligor. 
 
 

If 𝛼𝑘
2 = 𝜌 is the same for all instruments (e.g. all are assumed to have same correlation with market 

plus only an idiosyncratic term) then 𝑧𝑘 = √𝜌𝑥 + 𝜀𝑘√1− 𝜌. In such circumstances and if all obligors 

have the same probability of default 𝑝 say then probability 𝑝𝑘,𝑛 that 𝑘 out of 𝑛 default is: 

 

𝑃𝑘 = (
𝑛
𝑘
) ∫(𝑠(𝑢))

𝑘

∞

−∞

(1 − 𝑠(𝑢))
𝑛−𝑘

𝑑𝑁(𝑢)   𝑤ℎ𝑒𝑟𝑒 𝑠(𝑢) = 𝑁(
1

√1 − 𝜌
(𝑁−1(𝑝) − 𝑢√𝜌)) 

 
If 𝐹𝑛(𝜃) is the cumulative probability that the percentage loss on the portfolio does not exceed 𝜃 
then in the well diversified limit (Vasicek’s loss distribution): 
 

𝐹∞(𝜃) = lim
𝑛→∞

𝐹𝑛(𝜃) = 𝑁(
1

√𝜌
(𝑁−1(𝜃)√1 − 𝜌 − 𝑁−1(𝑝))) 

 
13.3 GARCH models 
 
Risk models may cater for heteroscedasticity by including GARCH features, e.g. the model might 
involve formulae along the lines of (in practice 𝜇 will slowly evolve as additional data is received): 
 

𝑥𝑡+1 = 𝜇 + 𝜎𝑡𝜀𝑡 
𝜀𝑡~𝑁(0,1) 

http://www.nematrian.com/ERMFormulaBookMiscellaneous.aspx
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where for, say, a GARCH(1,1) model 
 

𝜎𝑡
2 = 𝛼 + 𝛽(𝑥𝑡 − 𝜇)

2 + 𝛾𝜎𝑡−1
2  

 

RiskMetrics typically uses the following approach for estimating 𝜎𝑡
2 (often using 𝜆𝑖 = 𝜆

𝑖 for some 
suitably chosen decay factor 𝜆) which can be viewed as an example of a GARCH approach and/or 
using weighted moments. 
 
 

𝜎𝑡
2 =

∑ 𝜆𝑖(𝑥𝑡−𝑖 − 𝜇)
2𝑡−1

𝑖=0

∑ 𝜆𝑖
𝑡
𝑖=1

 

 
13.4 Linear algebra and principal components 
 
Suppose we have 𝑖 = 1,… ,𝑚 data series (e.g. returns) each with 𝑗 = 1,… , 𝑛 observations, 𝑋𝑖,𝑗, that 

are coincident in time across the different data series. Suppose the 𝑚 ×𝑚 covariance matrix of the 
(empirical) covariances between the different series is 𝐕. The eigenvalues and eigenvectors of 𝑉 are 
the values of 𝜆 (scalar) and associated 𝐱 (vector) for which 𝐕𝐱 = 𝜆𝐱. An 𝑚 ×𝑚 matrix has 𝑚 (not 
necessarily distinct) eigenvalues and associated eigenvectors. Eigenvectors associated with distinct 

eigenvalues are orthogonal, i.e. 𝐱𝑖
𝑇𝐱𝑘 = 0 for 𝑖 ≠ 𝑘. Orthonormal eigenvectors have |𝐱𝑖| = 𝐱𝑖

𝑇𝐱𝑖 =

1 and 𝐱𝑖
𝑇𝐱𝑘 = 0 for 𝑖 ≠ 𝑘.  For any distinct eigenvalue the associated orthonormal eigenvector is 

unique up to a change of sign. If 𝑞 > 1 eigenvalues all take the same value then it is possible to find 
𝑞 orthogonal eigenvectors corresponding to all of these eigenvalues. For empirical covariance 
matrices, 𝐕 is symmetric non-negative definite (and positive definite if no two data series are 
perfectly correlated) and all of its 𝑚 eigenvalues, 𝜆𝑖, are greater than or equal to zero. One way of 
telling if a matrix is positive definite is to test whether it is possible to apply a Cholesky 
decomposition to it. 
 
The eigenvalues and associated eigenvectors of an empirical covariance matrix may be sorted so 
that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0. The first principal component is the mixture of the underlying (de-

meaned) series, i.e. the 𝑟𝑗 = ∑ 𝑏𝑞(𝑋𝑞,𝑗 − �̅�𝑖)
𝑚
𝑞=1 , that corresponds to the orthonormal eigenvector, 

𝐛, corresponding to the largest eigenvalue of 𝑉. This choice of 𝐛 maximises 𝐛𝑇𝐕𝐛 subject to |𝐛| = 1,  
Other (lesser) principal components correspond to orthonormal eigenvectors corresponding to 
smaller eigenvalues. 
 
13.5 Central limit theorem 
 
Suppose we have a series of independent random variables 𝑋1, … , 𝑋𝑛, … each with finite (bounded) 
expected value 𝜇𝑖  and finite (bounded) standard deviation 𝜎𝑖. Suppose 𝑆𝑛 and 𝑍𝑛 are defined as: 
 

𝑆𝑛
2 =∑𝜎𝑖

2

𝑛

𝑖=1

        𝑍𝑛 =
1

𝑆𝑛
∑(𝑋𝑖 − 𝜇𝑖)

𝑛

𝑖=1

 

 
Then subject to certain regularity conditions the distribution of 𝑍𝑛 tends asymptotically to 𝑁(0,1) (it 
is exactly 𝑁(0,1) if each of the 𝑋𝑖  is normally distributed). 
 
13.6 Cornish-Fisher asymptotic expansion 
 

http://www.nematrian.com/MnPrincipalComponents.aspx


26 
 

The (4th moment) Cornish-Fisher asymptotic expansion approximates a standardised QQ-plot via the 
following function: 
 

𝑦𝐶𝐹4(𝑥) = 𝑥 +
𝛾1(𝑥

2 − 1)

6
+
3𝛾2(𝑥

3 − 3𝑥) − 2𝛾1
2(2𝑥3 − 5𝑥)

72
 

 
where 𝛾1 and 𝛾2 are the skew and excess kurtosis of the data. 
 
13.7 Euler capital allocation principle 
 
A function 𝑓(𝐮) where 𝐮 = (𝑢1, … , 𝑢𝑛)

𝑇 is said to be homogenous of order 𝑞 if: 
 

∑𝑢𝑖 (
𝜕𝑓

𝜕𝑢𝑖
|
𝑘𝐮

)

𝑛

𝑖=1

= 𝑞𝑘𝑞−1𝑓(𝐮) 

 
Suppose we have 𝑛 business lines, the outcome (loss) to each business line given its current size is 𝐿𝑖 
(a random variable) so the total loss is 𝐿 = ∑ 𝑢𝑖𝐿1

𝑛
𝑖=1  where for the current business portfolio the 

business line allocation is  𝐮 = (𝑢1, … 𝑢𝑛)
𝑇 = (1,… ,1)𝑇 = 𝟏. Suppose the risk measure used to 

determine economic capital is 𝑟(𝑥) and that it is homogeneous of order 1, i.e. 𝑟(𝑘𝐿) = 𝑘𝑟(𝐿). Then 
the Euler capital allocation principle (and, in effect, the Marginal VaR or Internal beta approach to 
setting RAROC rates) allocates total economic capital, 𝐸𝐶 (technically a function of the business 
portfolio allocation, 𝐮) into capital for each business line, 𝐸𝐶𝑖, as follows: 
 

𝐸𝐶 =∑𝐸𝐶𝑖

𝑛

𝑖=1

     𝑤ℎ𝑒𝑟𝑒 𝐸𝐶𝑖 = (𝑢𝑖
𝜕𝐸𝐶(𝐮)

𝜕𝑢𝑖
)|
𝐮=𝟏

 

 
13.8 Equiprobable outcomes for a multivariate normal distribution 
 
If 𝐗~𝑁(𝛍, 𝐕) where 𝛍 = 𝟎 then equiprobable scenarios (i.e. contours where 𝑝(𝑋) is constant) are 
ellipsoids defined by 𝐱𝑇𝐕−1𝐱 = 𝑘2 for some constant value of 𝑘. The probability that 𝑋 lies within 
this ellipsoid is given by a chi-squared with 𝑛 degrees of freedom: 
 

𝑃𝑟(𝑋 𝑖𝑛𝑠𝑖𝑑𝑒 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑) = 𝜒𝑛
2(𝑘2) 

 
13.9 RAROC, EIC, SHV and SVA 
 
Risk adjusted return on capital (RAROC) is usually defined as follows, where 𝐸 = Adjusted earnings = 
Earnings – Interest cost – expected loss – funding cost – other costs and 𝐾 = capital: 
 

𝑅𝐴𝑅𝑂𝐶 =
𝐸

𝐾
 

 
Economic income created (EIC) is usually defined as where 𝑐 = per unit cost of equity (i.e. hurdle 
rate): 
 

𝐸𝐼𝐶 = 𝐸 − 𝑐 × 𝐾 
 
Shareholder value (SHV) and shareholder value added (SVA) (also known as economic value added, 
EVA) translate current period return contribution to overall economic value. Given suitable 
assumptions about future growth prospects for a business, 𝑔, these are: 

http://www.nematrian.com/MnCornishFisher4.aspx
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𝑆𝐻𝑉 = 𝐾 × (
𝑅𝐴𝑅𝑂𝐶 − 𝑔

𝑐 − 𝑔
)        𝑆𝑉𝐴 = 𝐾 × (

𝑅𝐴𝑅𝑂𝐶 − 𝑔

𝑐 − 𝑔
− 1) 
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Appendix A: Probability Distributions 
[ERMFormulaBookAppendix] 

 
Definitions, characteristics, tabulations and common interpretations of a variety of (discrete and 
continuous) probability distributions are given below. Please note that some probability distributions 
have multiple names or have special cases called different names. 
 
For further details of these and other distributions recognised by the Nematrian website see here. 
 
A.1 Discrete (univariate) distributions 
A.2 Continuous (univariate) distributions 
A.3 Distributional mixtures 
A.4 Location and scale adjusted distributions 
A.5 Multivariate probability distributions 
A.6 Distributional families 
A.7 Standard (i.e. unit) normal distribution 

(a) Cumulative distribution function 
(b) Quantile points 

 
 

A.1: Discrete (univariate) distributions 
[ERMFormulaBookAppendixDiscrete] 
 
Binomial (and Bernoulli), Poisson 
 

Distribution name Binomial distribution 

Common notation 𝑋~𝐵(𝑛, 𝑝) 

Parameters 𝑛 = number of (independent) trials, positive integer 
𝑝 = probability of success in each trial, 0 ≤ 𝑝 ≤ 1 

Support 𝑥 ∈ {0,1,… , 𝑛} = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠 

Probability mass function 
𝑓(𝑥) = (

𝑛
𝑥
)𝑝𝑥(1 − 𝑝)𝑛−𝑥 =

𝑛!

(𝑛 − 𝑥)! 𝑥!
𝑝𝑥(1 − 𝑝)𝑛−𝑥 

Cumulative distribution 
function 𝐹(𝑥) =∑(

𝑛
𝑗)𝑝

𝑗(1 − 𝑝)𝑛−𝑗
𝑥

𝑗=0

= 𝐼1−𝑝(𝑛 − 𝑥, 𝑥 + 1) 

Mean 𝑛𝑝 

Variance 𝑛𝑝(1 − 𝑝) 

Skewness 1 − 2𝑝

√𝑛𝑝(1 − 𝑝)
 

(Excess) kurtosis 1 − 6𝑝(1 − 𝑝)

𝑛𝑝(1 − 𝑝)
 

Characteristic function (1 − 𝑝 + 𝑝𝑒𝑖𝑡)
𝑛

 

Other comments Corresponds to the number of successes in a sequence of 𝑛 
independent experiments each of which has a probability 𝑝 of being 
successful. 
 
The Bernoulli distribution is 𝐵(1, 𝑝) and corresponds to the likelihood 
of success of a single experiment.  Its probability mass function and 
cumulative distribution function are: 

http://www.nematrian.com/ERMFormulaBookAppendix.aspx
http://www.nematrian.com/ProbabilityDistributionsIntro.aspx
http://www.nematrian.com/ERMFormulaBookAppendixDiscrete.aspx
http://www.nematrian.com/ERMFormulaBookAppendixContinuous.aspx
http://www.nematrian.com/ERMFormulaBookAppendixMixtures.aspx
http://www.nematrian.com/ERMFormulaBookAppendixLocationScale.aspx
http://www.nematrian.com/ERMFormulaBookAppendixMultivariate.aspx
http://www.nematrian.com/ERMFormulaBookAppendixFamilies.aspx
http://www.nematrian.com/ERMFormulaBookAppendixCumulativeNormal.aspx
http://www.nematrian.com/ERMFormulaBookAppendixNormalQuantiles.aspx
http://www.nematrian.com/ERMFormulaBookAppendixDiscrete.aspx
http://www.nematrian.com/BinomialDistribution.aspx
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𝑓(𝑥) = 𝐹(𝑥) = {
1 − 𝑝, 𝑥 = 0
𝑝, 𝑥 = 1

 

 
The Bernoulli distribution with 𝑝 = 1 2⁄ , i.e. 𝐵(1, 1 2⁄ ), has the 
minimum possible excess kurtosis, i.e. −2.  
 

The mode of 𝐵(𝑛, 𝑝)  is 𝑖𝑛𝑡((𝑛 + 1)𝑝) if (𝑛 + 1)𝑝 is 0 or not an 

integer and is 𝑛 if (𝑛 + 1)𝑝 = 𝑛 + 1. If (𝑛 + 1)𝑝 ∈ {1,2,… , 𝑛} then 
the distribution is bi-modal, with modes (𝑛 + 1)𝑝 and (𝑛 + 1)𝑝 − 1. 

 
 

Distribution name Poisson distribution 

Common notation 𝑋~𝑃𝑜𝑖𝑠(𝜆) 

Parameters 𝜆 = event rate (𝜆 > 0) 

Support 𝑥 ∈ {0,1,2,… } 

Probability mass function 
𝑓(𝑥) =

𝜆𝑥𝑒−𝜆

𝑥!
 

Cumulative distribution 
function 𝐹(𝑥) = 𝑒−𝜆∑

𝜆𝑗

𝑗!

𝑥

𝑗=0

 

(can also be expressed using the incomplete gamma function) 

Mean 𝜆 

Variance 𝜆 

Skewness 𝜆−1 2⁄  
(Excess) kurtosis 𝜆−1 
Characteristic function 𝑒𝜆(𝑒

𝑖𝑡−1) 
Other comments Expresses the probability of a given number of events occurring in a 

fixed interval of time if the events occur with a known average rate 
and independently of the time since the last event. 
 
The median is approximately 𝑖𝑛𝑡(𝜆 + 1 3⁄ − 0.02 𝜆⁄ ). 
 
The mode is 𝑖𝑛𝑡(𝜆) if 𝜆 is not integral. Otherwise the distribution is 
bi-modal with modes 𝜆 and 𝜆 − 1. 

 
 

A.2: Continuous (univariate) distributions 
[ERMFormulaBookAppendixContinuous] 
 

- normal, uniform, chi-squared: see here 
- exponential, F, generalised extreme value (GEV) (and Frechét, Gumbel and Weibull): see 

here 
- generalised Pareto, lognormal, Student’s t: see here 

 
 

(a) Normal, uniform, chi-squared 
[Nematrian website page: ERMFormulaBookAppendixContinuous1, © Nematrian 2017] 

 

Distribution name Normal distribution 

Common notation 𝑋~𝑁(𝜇, 𝜎2) 

http://www.nematrian.com/PoissonDistribution.aspx
http://www.nematrian.com/ERMFormulaBookAppendixContinuous.aspx
http://www.nematrian.com/ERMFormulaBookAppendixContinuous1.aspx
http://www.nematrian.com/ERMFormulaBookAppendixContinuous2.aspx
http://www.nematrian.com/ERMFormulaBookAppendixContinuous3.aspx
http://www.nematrian.com/ERMFormulaBookAppendixContinuous1.aspx
http://www.nematrian.com/NormalDistribution.aspx


30 
 

Parameters 𝜎 = scale parameter (𝜎 > 0) 
𝜇 = location parameter 

Domain −∞ < 𝑥 < +∞ 

Probability density function 
𝑓(𝑥) ≡ 𝜙(𝑥) =

1

𝜎√2𝜋
exp (−

1

2
(
𝑥 − 𝜇

𝜎
)
2

) 

Cumulative distribution 
function 𝐹(𝑥) ≡ 𝑁(𝑥) = Φ(𝑥) =

1

√2𝜋
∫exp (−

1

2
(
𝑡 − 𝜇

𝜎
)
2

)𝑑𝑡

𝑥

−∞

 

Mean 𝜇 

Variance 𝜎2 
Skewness 0 

(Excess) kurtosis 0 

Characteristic function 
𝑒𝑖𝑡𝜇−

1
2
𝜎2𝑡2 

Other comments The normal distribution is also called the Gaussian distribution. The 
unit normal (or standard normal) distribution is 𝑁(0,1).  
 
The inverse unit normal distribution function (i.e. its quantile 
function) is commonly written 𝑁−1(𝑥) (also in some texts Φ(𝑥) and 
the unit normal density function is commonly written 𝜙(𝑥). 𝑁−1(𝑥) 
is also called the probit function. 
 

The error function distribution is 𝑁 (0,
1

2ℎ
), where ℎ is now an inverse 

scale parameter ℎ > 0. 
 
The median and mode of a normal distribution are 𝜇. 
 
The truncated first moments of 𝑁(𝜇, 𝜎2) are: 
 

∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑈

𝐿

= 𝜇 (𝑁 (
𝑈 − 𝜇

𝜎
) − 𝑁 (

𝐿 − 𝜇

𝜎
))

− 𝜎 (𝜙 (
𝑈 − 𝜇

𝜎
) − 𝜙 (

𝐿 − 𝜇

𝜎
)) 

 
where 𝜙(𝑥) and 𝑁(𝑥) are the pdf and cdf of the unit normal 
distribution respectively. 
 
The mean excess function of a standard normal distribution is thus 

𝑒(𝑢) =
𝜙(𝑢) − 𝑢𝑁(−𝑢)

𝑁(−𝑢)
=

1

√2𝜋
𝑒𝑥𝑝 (−

1
2 𝑢

2) − 𝑢𝑁(−𝑢)

𝑁(−𝑢)
 

 
The central moments of the normal distribution are: 

𝐸((𝑋 − 𝜇)𝑘) = {
0       𝑖𝑓 𝑘 𝑖𝑠 𝑜𝑑𝑑

𝜎𝑘 × 1 × 3 × …× (𝑘 − 1)     𝑖𝑓 𝑘 𝑖𝑠 𝑒𝑣𝑒𝑛
 

 
 

Distribution name Uniform distribution 

Common notation 𝑋~𝑈(𝑎, 𝑏) 

Parameters 𝑎, 𝑏 = boundary parameters (𝑎 < 𝑏) 

http://www.nematrian.com/UniformDistribution.aspx
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Domain 𝑎 ≤ 𝑥 ≤ 𝑏 

Probability density function 
𝑓(𝑥) =

1

𝑏 − 𝑎
 

Cumulative distribution 
function 

𝐹(𝑥) =
𝑥 − 𝑎

𝑏 − 𝑎
 

Mean (𝑎 + 𝑏) 2⁄  

Variance (𝑏 − 𝑎)2 12⁄  
Skewness 0 

(Excess) kurtosis −6 5⁄  

Characteristic function 𝑒𝑖𝑏𝑡 − 𝑒𝑖𝑎𝑡

𝑖𝑡(𝑏 − 𝑎)
 

Other comments Its non-central moments (𝑟 = 1,2,3, … ) are 𝐸(𝑋𝑟) =
1

(𝑏−1)

1

𝑟+1
(𝑏𝑟+1 − 𝑎𝑟+1). Its median is (𝑎 + 𝑏) 2⁄ . 

 
 

Distribution name Chi-squared distribution 

Common notation 𝑋~𝜒𝜈
2 

Parameters 𝜈 = degrees of freedom (positive integer) 

Domain 0 ≤ 𝑥 < +∞ 

Probability density function 

𝑓(𝑥) =
𝑥𝜈 2⁄ −1 exp (−

𝑥
2)

2𝜈 2⁄ Γ(𝜈 2⁄ )
 

Cumulative distribution 
function 𝐹(𝑥) =

Γ𝑥 2⁄ (𝜈 2⁄ )

Γ(𝜈 2⁄ )
 

Mean 𝜈 

Variance 2𝜈 
Skewness 

2√
2

𝜈
 

(Excess) kurtosis 12

𝜈
 

Characteristic function (1 − 2𝑖𝑡)−𝜈 2⁄  
Other comments 

Its median is approximately 𝜈 (1 −
2

9𝜈
)
3

. Its mode is max(𝜈 − 2,0). Is 

also known as the central chi-squared distribution (when there is a 
need to contrast it with the noncentral chi-squared distribution). 
 
In the special case of 𝜈 = 2 the cumulative distribution function 

simplifies to 𝐹(𝑥) = 1 − 𝑒−𝑥 2⁄ . 
 
The chi-squared distribution with 𝜈 degrees of freedom is the 
distribution of a sum of the squares of 𝜈 independent standard 
normal random variables. A consequence is that the sum of 
independent chi-squared variables is also chi-squared distributed. It 
is widely used in hypothesis testing, goodness of fit analysis or in 
constructing confidence intervals. It is a special case of the gamma 
distribution. 
 

As 𝜈 → ∞, (𝜒𝜈
2 − 𝜈) √2𝜈⁄ → 𝑁(0,1) and 𝑞𝐹(𝑞, 𝜈) → 𝜒𝑞

2 

 
 

http://www.nematrian.com/ChiSquaredDistribution.aspx
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(b) exponential, F, generalised extreme value (GEV) (and Frechét, Gumbel 
and Weibull) 
[ERMFormulaBookAppendixContinuous2] 
 

Distribution name Exponential distribution 

Common notation 𝑋~𝐸𝑥𝑝(𝜆) 

Parameters 𝜆 = inverse scale (i.e. rate) parameter (𝜆 > 0) 

Domain 0 ≤ 𝑥 < +∞ 

Probability density function 𝑓(𝑥) = 𝜆 exp(−𝜆𝑥) 

Cumulative distribution 
function 

𝐹(𝑥) = 1 − exp(−𝜆𝑥) 

Mean 1

𝜆
 

Variance 1

𝜆2
 

Skewness 2 

(Excess) kurtosis 6 

Characteristic function (1 − 𝑖 𝑡 𝜆⁄ )−1 
Other comments Also called the negative exponential distribution. The mode of an 

exponential distribution is 0. The exponential distribution describes 
the time between events if these events follow a Poisson process. It 
is not the same as the exponential family of distributions. The 
quantile function, i.e. the inverse cumulative distribution function, is 

𝐹−1(𝑝; 𝜆) = −
log(1−𝑝)

𝜆
. 

 

The non-central moments (𝑟 = 1,2,3,… ) are 𝐸(𝑋𝑟) =
Γ(1+𝑟)

𝜆𝑟
. Its 

median is 
log 2

𝜆
. 

 
 

Distribution name F distribution 

Common notation 𝑋~𝐹(𝜈1, 𝜈2) 

Parameters 𝜈1 = degrees of freedom (first) (positive integer) 
𝜈2 = degrees of freedom (second) (positive integer) 

Domain 0 ≤ 𝑥 < +∞ 

Probability density function 

𝑓(𝑥) =
1

𝑥𝐵(𝜈1 2⁄ , 𝜈2 2⁄ )
√

(𝜈1𝑥)
𝜈1𝜈2

𝜈2

(𝜈1𝑥 + 𝜈2)
𝜈1+𝜈2

 

Cumulative distribution 
function 𝐹(𝑥) =

𝐵(𝜈1𝑥) (𝜈1𝑥+𝜈2)⁄ (𝜈1, 𝜈2)

𝐵(𝜈1 2⁄ , 𝜈2 2⁄ )
= 𝐼(𝜈1𝑥) (𝜈1𝑥+𝜈2)⁄ (𝜈1 2⁄ , 𝜈2 2⁄ ) 

Mean 𝜈1
𝜈2 − 2

   for 𝜈2 > 2 

Variance 2𝜈2
2(𝜈1 + 𝜈2 − 2)

𝜈1(𝜈2 − 2)
2(𝜈2 − 4)

    for 𝜈2 > 4 

Skewness (2𝜈1 + 𝜈2 − 2)√8(𝜈2 − 4)

(𝜈2 − 6)√𝜈1(𝜈1 + 𝜈2 − 2)
    for 𝜈2 > 6 

(Excess) kurtosis 
12
𝜈1(5𝜈2 − 22)(𝜈1 + 𝜈2 − 2) + (𝜈2 − 4)(𝜈2 − 2)

2

𝜈1(𝜈2 − 6)(𝜈2 − 8)(𝜈1 + 𝜈2 − 2)
 for 𝜈2 > 8 

http://www.nematrian.com/ERMFormulaBookAppendixContinuous2.aspx
http://www.nematrian.com/ExponentialDistribution.aspx
http://www.nematrian.com/FDistribution.aspx
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Characteristic function Γ (
𝜈1 + 𝜈2
2

)

Γ (
𝜈2
2
)

𝑈 (
𝜈1
2
, 1 −

𝜈2
2
,−
𝜈2
𝜈1
𝑖𝑡) 

Where 𝑈(𝑎, 𝑏, 𝑧) is the confluent hypergeometric function of the 
second kind 

Other comments The F distribution is a special case of the Pearson type 6 distribution. 
It is also known as Snedecor’s F or the Fisher-Snedecor distribution. It 
commonly arises in statistical tests linked to analysis of variance. 
 
If 𝑋1~𝜒

2(𝜈1) and 𝑋2~𝜒
2(𝜈2) are independent random variables 

then 
 

𝑋1 𝜈1⁄

 𝑋2 𝜈2⁄
~𝐹(𝜈1, 𝜈2) 

 
The F-distribution is a particular example of the beta prime 
distribution. 
 

The mode is 
(𝜈1−2)

𝜈1

𝜈2

𝜈2+2
    for 𝜈1 > 2. There is no simple closed form 

for the median. 

 
 

Distribution name Generalised extreme value (GEV) distribution (for maxima) 

Common notation 𝑋~𝐺𝐸𝑉(𝜉, 𝜇, 𝜎) 

Parameters 𝜉 = shape parameter 
𝜇 = location parameter 
𝜎 = scale parameter 

Domain 1 + (
𝑥 − 𝜇

𝜎
) 𝜉 > 0 𝜉 ≠ 0

−∞ < 𝑥 < ∞ 𝜉 = 0
 

Probability density function 
𝑓(𝑥) =

1

𝜎
𝑄(𝑥)𝜉+1𝑒−𝑄(𝑥) 

where 

𝑄(𝑥) =

{
 
 

 
 
(1 + 𝜉 (

𝑥 − 𝜇

𝜎
))

−1 𝜉⁄

𝜉 ≠ 0

exp (−
𝑥 − 𝜇

𝜎
) 𝜉 = 0

 

Cumulative distribution 
function 

𝐹(𝑥) = 𝑒−𝑄(𝑥) 

Mean 

{
 

 𝜇 + 𝜎
Γ(1 − 𝜉) − 1

𝜉
   𝑖𝑓 𝜉 ≠ 0, 𝜉 < 1

𝜇 + 𝜎𝛾      𝑖𝑓 𝜉 = 0
∞ 𝜉 ≥ 1

   

where 𝛾 is Euler’s constant, i.e. lim
𝑛→∞

(∑
1

𝑘
− log𝑛𝑛

𝑘=1 ) 

Variance 

{
 
 

 
 𝜎2

 𝑔2 − 𝑔1
2

𝜉2
   𝑖𝑓 𝜉 ≠ 0, 𝜉 < 1 2⁄

𝜎2𝜋2

6
     𝑖𝑓 𝜉 = 0

∞ 𝜉 ≥ 1 2⁄
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Where 𝑔𝑘 =  Γ(1 − 𝑘𝜉) 

Skewness 

{
 
 

 
 𝑔3 − 3𝑔1𝑔2 + 2𝑔1

3

(𝑔2 − 𝑔1
2)3 2⁄

   𝑖𝑓 𝜉 ≠ 0

12√6𝜍(3)

𝜋3
     𝑖𝑓 𝜉 = 0

 

where 𝜍(𝑥) is the Riemann zeta function, i.e. ∑
1

𝑘𝑥
∞
𝑘=1 . 

(Excess) kurtosis 

{
 

 
𝑔4 − 4𝑔1𝑔3 + 6𝑔2𝑔1

2 − 3𝑔1
4

(𝑔2 − 𝑔1
2)2

   𝑖𝑓 𝜉 ≠ 0

12

5
     𝑖𝑓 𝜉 = 0

 

Other comments 𝜉 defines the tail behaviour of the distribution. The sub-families 
defined by 𝜉 = 0 (Type I), 𝜉 > 0 (Type II) and 𝜉 < 0 (Type III) 
correspond to the Gumbel, Frechét and Weibull families respectively. 
 
An important special case when analysing threshold exceedances 
involves 𝜇 = 0 (and normally 𝜉 > 0) and this special case may be 
referred to as 𝐺𝐸𝑉(𝜉, 𝜎). 

 
 

(c) generalised Pareto, lognormal, Student’s t 
[ERMFormulaBookAppendixContinuous3] 
 

Distribution name Generalised Pareto distribution (GPD) 

Common notation 𝑋~𝐺𝑃𝐷(𝜉, 𝜇, 𝜎) 

Parameters 𝜉 = shape parameter 
𝜇 = location parameter 
𝜎 = scale parameter (𝜎 > 0) 

Domain 𝜇 ≤ 𝑥 < +∞ 𝜉 ≥ 0

𝜇 ≤ 𝑥 ≤ 𝜇 −
𝜎

𝜉
𝜉 < 0 

Probability density function 

𝑓(𝑥) = {

1

𝜎
(1 + 𝜉𝑧)−1−1 𝜉⁄ 𝜉 ≠ 0

1

𝜎
exp(−𝑧) 𝜉 = 0

 

where 

𝑧 =
𝑥 − 𝜇

𝜎
 

Cumulative distribution 
function 

𝐹(𝑥) = {
1 − (1 + 𝜉𝑧)−1 𝜉⁄ 𝜉 ≠ 0

1 − exp(−𝑧) 𝜉 = 0
 

Mean 𝜇 +
𝜎

1 − 𝜉
             𝜉 < 1 

Variance 𝜎2

(1 − 2𝜉)(1 − 𝜉)2
            𝜉 <

1

2
 

Skewness 2(1 + 𝜉)√1 − 2𝜉

1 − 3𝜉
              𝜉 <

1

3
 

(Excess) kurtosis 6(1 + 𝜉 − 6𝜉2 − 2𝜉3)

(1 − 3𝜉)(1 − 4𝜉)
             𝜉 <

1

4
 

Other comments GPD is used in the peaks over thresholds variant of extreme value 
theory 

 

http://www.nematrian.com/ERMFormulaBookAppendixContinuous3.aspx
http://www.nematrian.com/GeneralisedParetoDistribution.aspx


35 
 

 

Distribution name Lognormal distribution 

Common notation 𝑋~𝑙𝑜𝑔𝑁(𝜇, 𝜎2) 
Parameters 𝜎 = scale parameter (𝜎 > 0) 

𝜇 = location parameter 

Domain 0 < 𝑥 < +∞ 

Probability density function 

𝑓(𝑥) =

exp (−
1
2
(
log 𝑥 − 𝜇

𝜎
)
2

)

𝑥𝜎√2𝜋
 

Cumulative distribution 
function 

𝐹(𝑥) = 𝑁 (
log 𝑥 − 𝜇

𝜎
) =

1

2
+
1

2
𝑒𝑟𝑓 (

log 𝑥 − 𝜇

√2𝜎2
) 

Mean 𝑒𝜇+𝜎
2 2⁄  

Variance (𝑒(𝜎
2) − 1)𝑒2𝜇+𝜎

2
 

Skewness (𝑒(𝜎
2) + 2)√𝑒(𝜎

2) − 1 

(Excess) kurtosis 𝑒(4𝜎
2) + 2𝑒(3𝜎

2) + 3𝑒(2𝜎
2) − 6 

Characteristic function No simple expression that is not divergent  

Other comments The median of a lognormal distribution is 𝑒𝜇 and its mode is 𝑒𝜇−𝜎
2
. 

 
The truncated moments of  𝑙𝑜𝑔𝑁(𝜇, 𝜎2) are: 

∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥

𝑈

𝐿

= 𝑒𝑘𝜇+𝑘
2𝜎2 2⁄ (𝑁 (

log𝑈 − 𝜇

𝜎
− 𝑘𝜎)

− 𝑁 (
log 𝐿 − 𝜇

𝜎
− 𝑘𝜎)) 

 
 

Distribution name (Standard) Student’s t distribution 

Common notation 𝑋~𝑡𝜈 

Parameters 𝜈 = degrees of freedom (𝜈 > 0, usually 𝜈 is an integer although in 
some situations a non-integral 𝜈 can arise) 

Domain −∞ < 𝑥 < +∞ 

Probability density function 

𝑓(𝑥) =
1

√𝜋𝜈

Γ (
𝜈 + 1
2 )

Γ (
𝜈
2)

(1 +
𝑥2

𝑣
)

−
𝜈+1
2

=
1

√𝜈𝐵 (
1
2 ,
𝜈
2)
(1 +

𝑥2

𝑣
)

−
𝜈+1
2

 

Cumulative distribution 
function 

𝐹(𝑥) = {

1

2
𝐼𝑧 (

𝜈

2
,
1

2
) 𝑥 < 0

1 −
1

2
𝐼𝑧 (

𝜈

2
,
1

2
) 𝑥 ≥ 0

 

where 𝑧 = 𝜈 (𝜈 + 𝑥2)⁄  

Mean 0 

Variance 𝜈

𝜈 − 2
   𝑓𝑜𝑟  𝜈 > 2 

Skewness 0     𝑓𝑜𝑟 𝜈 > 3 

(Excess) kurtosis 3(𝜈 − 2)

𝜈 − 4
   𝑓𝑜𝑟  𝜈 > 4 

Characteristic function 𝐾𝜈 2⁄ (√𝜈|𝑡|)(√𝜈|𝑡|)
𝜈 2⁄

Γ(𝜈 2⁄ )2𝜈 2⁄ −1
 

where 𝐾𝜈 2⁄ (𝑥) is a Bessel function 

http://www.nematrian.com/LognormalDistribution.aspx
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Other comments The Student’s t distribution (more simply the t distribution) arises 
when estimating the mean of a normally distributed population 
when sample sizes are small and the population standard deviation is 
unknown. 
 
It is a special case of the generalised hyperbolic distribution. 
 
Its non-central moments if 𝑟 is even and 0 < 𝑟 <  𝜈 are: 

𝐸(𝑋𝑟) =
Γ (
𝑟 + 1
2 ) Γ (

𝜈 − 𝑟
2 ) 𝜈𝑟 2⁄

√𝜋Γ(
𝜈
2
)

 

 
If 𝑟 is even and 0 <  𝜈 ≤ 𝑟 then 𝐸(𝑋𝑟) = ∞, if 𝑟 is odd and 0 < 𝑟 <
 𝜈 then 𝐸(𝑋𝑟) = 0 and if 𝑟 is odd and 0 <  𝜈 ≤ 𝑟  then 𝐸(𝑋𝑟) is 
undefined. 

 
 

A.3: Distributional mixtures 
[ERMFormulaBookAppendixMixtures] 
 
A random variable is distributed according to a normal mixture distribution if it is of the form 𝑋 =

𝑚(𝑊) + √𝑊𝜎𝑍 where 𝑊 and 𝑍 are independent random variables, 𝑊 is a non-negative random 
variable, 𝑍~𝑁(0,1) and 𝑚(𝑊) is some function of 𝑊. For example, the t distribution has 𝑚(𝑊) = 𝜇 
and 1 𝑊⁄  being chi-squared with 𝜈 degrees of freedom and the standard non-central t distribution 

has 𝑚(𝑊) = 𝑑√𝑊 where 𝑑 is the non-centrality parameter and 1 𝑊⁄  is chi-squared with 𝜈 degrees 
of freedom. 
 
A distributional mixture of normal distributions is to be interpreted more generally as any 
distribution in which the overall random variable is selected with probability 𝑝𝑖  from a (typically 

finite) number of normal random distributions, the 𝑖’th one of which is 𝑁(𝜇𝑖, 𝜎𝑖
2) for arbitrary 

constant 𝜇𝑖  and 𝜎𝑖. Any univariate distribution can be approximated arbitrarily accurately with a 
large enough number of underlying normal random distributions. It is contrasted with a linear 
combination mixture of normal distributions in which the overall random variable is derived by 
adding together a linear combination of underlying normal random variables, i.e. 𝑋 = 𝑎1𝑋1 +⋯+
𝑎𝑛𝑋𝑛. 
 
 

A.4: Location and scale adjusted distributions 
[ERMFormulaBookAppendixLocationScale] 
 
The location and scale of any probability distribution can be adjusted by using the (linear) transform 
𝑌 = 𝑔 + ℎ𝑋 where 𝑔 and ℎ are constants. This leaves the skew and (excess kurtosis) unaltered but 
alters the mean and variance as follows: 𝐸(𝑌) = 𝑔 + ℎ𝐸(𝑋) and 𝑣𝑎𝑟(𝑌) = ℎ2𝑣𝑎𝑟(𝑋). 
 
In some cases, the typical distributional specification already includes such components. For 
example, the normal distribution 𝑁(𝜇, 𝜎2) is the location and scale adjusted version of the unit 
normal distribution 𝑁(0,1). 
 
In other cases, the standard distributional specification does not include such adjustments. For 
example, the (standard) Student’s t distribution depends one just one parameter, its degrees of 

http://www.nematrian.com/ERMFormulaBookAppendixMixtures.aspx
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freedom. In these cases, the distributional definition noted above may need to be expanded to 
include location and/or scale adjusted variants when fitting data to such distributions. 
 
 

A.5: Multivariate probability distributions 
[ERMFormulaBookAppendixMultivariate] 
 
Multivariate normal (i.e. Gaussian) distribution 
 
The multivariate probability distribution 𝑁(𝛍, 𝐕) where 𝛍 is a vector of 𝑛 elements and 𝐕 is an 𝑛 × 𝑛 
non-negative definite matrix has the following joint density function (where |𝐕| = det 𝐕 is the 
determinant of V) 
 

𝑓(𝐱) =
1

(2𝜋)𝑛 2⁄ √|𝐕|
exp(−

1

2
(𝐱 − 𝛍)𝑇𝐕(𝐱 − 𝛍)) 

 
The means of the individual marginal distributions are 𝜇𝑖  where 𝛍 = (𝜇1, 𝜇2, … , 𝜇𝑛)

𝑇 and the 
covariance between the 𝑖’th and the 𝑗’th marginal distributions are 𝑉𝑖𝑗 where the 𝑉𝑖𝑗 are the 

elements of 𝐕. Its moment generating function is 𝑀(𝑡) = exp (𝐭𝑇𝛍 +
1

2
𝐭𝑇𝐕𝐭) and its characteristic 

function is 𝜑(𝑡) = exp (𝑖𝐭𝑇𝛍−
1

2
𝐭𝑇𝐕𝐭). The multivariate normal distribution has as its copula the 

Gaussian copula. 
 
A bivariate random variable 𝑋 = (𝑋1, 𝑋2)

𝑇 follows a standard bivariate normal distribution if it has 

𝛍 = 𝟎 and 𝐕 = (
1 𝜌
𝜌 1

). More generally, a multivariate normal distribution is a standard 

multivariate normal distribution if 𝛍 = 𝟎 and a covariance matrix which is also a correlation matrix, 
i.e. where the variance of each individual marginal distribution is 1. 
 
For numerical values of the cumulative distribution function of the standard bivariate normal 
distribution see here. 
 
 

A.6: Distributional families 
[ERMFormulaBookProbabilityDistributions] 
 
Exponential family 
 
A (continuous) random variable 𝐗 (multivariate or univariate) follows a distribution from the 
exponential family, with vector parameter 𝛉, if its probability (density) function can be written in the 
form: 
 

𝑓𝐗(𝐱|𝛉) = ℎ(𝐱) exp(𝛈(𝛉)𝐓(𝐱) − 𝐴(𝛉)) 

 
or equivalently as: 
 

𝑓𝐗(𝐱|𝛉) = ℎ(𝐱)𝑔(𝛉) exp(𝛈(𝛉). 𝐓(𝐱)) 

 
The 𝑔(𝛉) are automatically determined once the other functions have been chosen because 

∫𝑓𝐗(𝐱|𝛉)𝑑𝐱 = 1. 𝛈 is called the natural parameter. 

http://www.nematrian.com/ERMFormulaBookAppendixMultivariate.aspx
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A.7: Standard (i.e. unit) normal distribution: 
 
(a) Cumulative distribution function 
[ERMFormulaBookAppendixCumulativeNormal] 
 
The table below tabulates the cumulative distribution function of the unit normal distribution, i.e. 
 

𝑁(𝑥) = Φ(𝑥) =
1

√2𝜋
∫exp (−

1

2
𝑡2) 𝑑𝑡

𝑥

−∞

 

 
- for values of 𝑥 from 0.00 to 1.00 see here 
- for values of 𝑥 from 1.00 to 2.00 see here 
- for values of 𝑥 from 2.00 to 3.00 see here 
- for values of 𝑥 from 3.00 to 4.00 see here 

 
 

(1) 
[ERMFormulaBookAppendixCumulativeNormal1] 
 
The table below tabulates the cumulative distribution function of the unit normal distribution, i.e. 
 

𝑁(𝑥) = Φ(𝑥) =
1

√2𝜋
∫exp (−

1

2
𝑡2) 𝑑𝑡

𝑥

−∞

 

 
for values of 𝑥 from 0.00 to 1.00: 
 

𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 
0.00 0.50000 0.20 0.57926 0.40 0.65542 0.60 0.72575 0.80 0.78814 
0.01 0.50399 0.21 0.58317 0.41 0.65910 0.61 0.72907 0.81 0.79103 
0.02 0.50798 0.22 0.58706 0.42 0.66276 0.62 0.73237 0.82 0.79389 
0.03 0.51197 0.23 0.59095 0.43 0.66640 0.63 0.73565 0.83 0.79673 
0.04 0.51595 0.24 0.59483 0.44 0.67003 0.64 0.73891 0.84 0.79955 

          
0.05 0.51994 0.25 0.59871 0.45 0.67364 0.65 0.74215 0.85 0.80234 
0.06 0.52392 0.26 0.60257 0.46 0.67724 0.66 0.74537 0.86 0.80511 
0.07 0.52790 0.27 0.60642 0.47 0.68082 0.67 0.74857 0.87 0.80785 
0.08 0.53188 0.28 0.61026 0.48 0.68439 0.68 0.75175 0.88 0.81057 
0.09 0.53586 0.29 0.61409 0.49 0.68793 0.69 0.75490 0.89 0.81327 

          
0.10 0.53983 0.30 0.61791 0.50 0.69146 0.70 0.75804 0.90 0.81594 
0.11 0.54380 0.31 0.62172 0.51 0.69497 0.71 0.76115 0.91 0.81859 
0.12 0.54776 0.32 0.62552 0.52 0.69847 0.72 0.76424 0.92 0.82121 
0.13 0.55172 0.33 0.62930 0.53 0.70194 0.73 0.76730 0.93 0.82381 
0.14 0.55567 0.34 0.63307 0.54 0.70540 0.74 0.77035 0.94 0.82639 

          
0.15 0.55962 0.35 0.63683 0.55 0.70884 0.75 0.77337 0.95 0.82894 
0.16 0.56356 0.36 0.64058 0.56 0.71226 0.76 0.77637 0.96 0.83147 
0.17 0.56749 0.37 0.64431 0.57 0.71566 0.77 0.77935 0.97 0.83398 
0.18 0.57142 0.38 0.64803 0.58 0.71904 0.78 0.78230 0.98 0.83646 
0.19 0.57535 0.39 0.65173 0.59 0.72240 0.79 0.78524 0.99 0.83891 

          
0.20 0.57926 0.40 0.65542 0.60 0.72575 0.80 0.78814 1.00 0.84134 

 

http://www.nematrian.com/ERMFormulaBookAppendixCumulativeNormal.aspx
http://www.nematrian.com/MnCumulativeNormal.aspx
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(2) 
[ERMFormulaBookAppendixCumulativeNormal2] 
 
The table below tabulates the cumulative distribution function of the unit normal distribution, i.e. 
 

𝑁(𝑥) = Φ(𝑥) =
1

√2𝜋
∫exp (−

1

2
𝑡2) 𝑑𝑡

𝑥

−∞

 

 
for values of 𝑥 from 1.00 to 2.00: 
 

𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 
1.00 0.84134 1.20 0.88493 1.40 0.91924 1.60 0.94520 1.80 0.96407 
1.01 0.84375 1.21 0.88686 1.41 0.92073 1.61 0.94630 1.81 0.96485 
1.02 0.84614 1.22 0.88877 1.42 0.92220 1.62 0.94738 1.82 0.96562 
1.03 0.84849 1.23 0.89065 1.43 0.92364 1.63 0.94845 1.83 0.96638 
1.04 0.85083 1.24 0.89251 1.44 0.92507 1.64 0.94950 1.84 0.96712 

          
1.05 0.85314 1.25 0.89435 1.45 0.92647 1.65 0.95053 1.85 0.96784 
1.06 0.85543 1.26 0.89617 1.46 0.92785 1.66 0.95154 1.86 0.96856 
1.07 0.85769 1.27 0.89796 1.47 0.92922 1.67 0.95254 1.87 0.96926 
1.08 0.85993 1.28 0.89973 1.48 0.93056 1.68 0.95352 1.88 0.96995 
1.09 0.86214 1.29 0.90147 1.49 0.93189 1.69 0.95449 1.89 0.97062 

          
1.10 0.86433 1.30 0.90320 1.50 0.93319 1.70 0.95543 1.90 0.97128 
1.11 0.86650 1.31 0.90490 1.51 0.93448 1.71 0.95637 1.91 0.97193 
1.12 0.86864 1.32 0.90658 1.52 0.93574 1.72 0.95728 1.92 0.97257 
1.13 0.87076 1.33 0.90824 1.53 0.93699 1.73 0.95818 1.93 0.97320 
1.14 0.87286 1.34 0.90988 1.54 0.93822 1.74 0.95907 1.94 0.97381 

          
1.15 0.87493 1.35 0.91149 1.55 0.93943 1.75 0.95994 1.95 0.97441 
1.16 0.87698 1.36 0.91309 1.56 0.94062 1.76 0.96080 1.96 0.97500 
1.17 0.87900 1.37 0.91466 1.57 0.94179 1.77 0.96164 1.97 0.97558 
1.18 0.88100 1.38 0.91621 1.58 0.94295 1.78 0.96246 1.98 0.97615 
1.19 0.88298 1.39 0.91774 1.59 0.94408 1.79 0.96327 1.99 0.97670 

          
1.20 0.88493 1.40 0.91924 1.60 0.94520 1.80 0.96407 2.00 0.97725 

 
 

(3) 
[ERMFormulaBookAppendixCumulativeNormal3] 
 
The table below tabulates the cumulative distribution function of the unit normal distribution, i.e. 
 

𝑁(𝑥) = Φ(𝑥) =
1

√2𝜋
∫exp (−

1

2
𝑡2) 𝑑𝑡

𝑥

−∞

 

 
for values of 𝑥 from 2.00 to 3.00: 
 

𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 
2.00 0.97725 2.20 0.98610 2.40 0.99180 2.60 0.99534 2.80 0.99744 
2.01 0.97778 2.21 0.98645 2.41 0.99202 2.61 0.99547 2.81 0.99752 
2.02 0.97831 2.22 0.98679 2.42 0.99224 2.62 0.99560 2.82 0.99760 
2.03 0.97882 2.23 0.98713 2.43 0.99245 2.63 0.99573 2.83 0.99767 
2.04 0.97932 2.24 0.98745 2.44 0.99266 2.64 0.99585 2.84 0.99774 

http://www.nematrian.com/ERMFormulaBookAppendixCumulativeNormal2.aspx
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2.05 0.97982 2.25 0.98778 2.45 0.99286 2.65 0.99598 2.85 0.99781 
2.06 0.98030 2.26 0.98809 2.46 0.99305 2.66 0.99609 2.86 0.99788 
2.07 0.98077 2.27 0.98840 2.47 0.99324 2.67 0.99621 2.87 0.99795 
2.08 0.98124 2.28 0.98870 2.48 0.99343 2.68 0.99632 2.88 0.99801 
2.09 0.98169 2.29 0.98899 2.49 0.99361 2.69 0.99643 2.89 0.99807 

          
2.10 0.98214 2.30 0.98928 2.50 0.99379 2.70 0.99653 2.90 0.99813 
2.11 0.98257 2.31 0.98956 2.51 0.99396 2.71 0.99664 2.91 0.99819 
2.12 0.98300 2.32 0.98983 2.52 0.99413 2.72 0.99674 2.92 0.99825 
2.13 0.98341 2.33 0.99010 2.53 0.99430 2.73 0.99683 2.93 0.99831 
2.14 0.98382 2.34 0.99036 2.54 0.99446 2.74 0.99693 2.94 0.99836 

          
2.15 0.98422 2.35 0.99061 2.55 0.99461 2.75 0.99702 2.95 0.99841 
2.16 0.98461 2.36 0.99086 2.56 0.99477 2.76 0.99711 2.96 0.99846 
2.17 0.98500 2.37 0.99111 2.57 0.99492 2.77 0.99720 2.97 0.99851 
2.18 0.98537 2.38 0.99134 2.58 0.99506 2.78 0.99728 2.98 0.99856 
2.19 0.98574 2.39 0.99158 2.59 0.99520 2.79 0.99736 2.99 0.99861 

          
2.20 0.98610 2.40 0.99180 2.60 0.99534 2.80 0.99744 3.00 0.99865 

 
 

(4) 
[ERMFormulaAppendixCumulativeNormal4] 
 
The table below tabulates the cumulative distribution function of the unit normal distribution, i.e. 
 

𝑁(𝑥) = Φ(𝑥) =
1

√2𝜋
∫exp (−

1

2
𝑡2) 𝑑𝑡

𝑥

−∞

 

 
for values of 𝑥 from 3.00 to 4.00: 
 

𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 𝒙 𝑁(𝑥) 
3.00 0.99865 3.20 0.99931 3.40 0.99966 3.60 0.99984 3.80 0.99993 
3.01 0.99869 3.21 0.99934 3.41 0.99968 3.61 0.99985 3.81 0.99993 
3.02 0.99874 3.22 0.99936 3.42 0.99969 3.62 0.99985 3.82 0.99993 
3.03 0.99878 3.23 0.99938 3.43 0.99970 3.63 0.99986 3.83 0.99994 
3.04 0.99882 3.24 0.99940 3.44 0.99971 3.64 0.99986 3.84 0.99994 

          
3.05 0.99886 3.25 0.99942 3.45 0.99972 3.65 0.99987 3.85 0.99994 
3.06 0.99889 3.26 0.99944 3.46 0.99973 3.66 0.99987 3.86 0.99994 
3.07 0.99893 3.27 0.99946 3.47 0.99974 3.67 0.99988 3.87 0.99995 
3.08 0.99896 3.28 0.99948 3.48 0.99975 3.68 0.99988 3.88 0.99995 
3.09 0.99900 3.29 0.99950 3.49 0.99976 3.69 0.99989 3.89 0.99995 

          
3.10 0.99903 3.30 0.99952 3.50 0.99977 3.70 0.99989 3.90 0.99995 
3.11 0.99906 3.31 0.99953 3.51 0.99978 3.71 0.99990 3.91 0.99995 
3.12 0.99910 3.32 0.99955 3.52 0.99978 3.72 0.99990 3.92 0.99996 
3.13 0.99913 3.33 0.99957 3.53 0.99979 3.73 0.99990 3.93 0.99996 
3.14 0.99916 3.34 0.99958 3.54 0.99980 3.74 0.99991 3.94 0.99996 

          
3.15 0.99918 3.35 0.99960 3.55 0.99981 3.75 0.99991 3.95 0.99996 
3.16 0.99921 3.36 0.99961 3.56 0.99981 3.76 0.99992 3.96 0.99996 
3.17 0.99924 3.37 0.99962 3.57 0.99982 3.77 0.99992 3.97 0.99996 
3.18 0.99926 3.38 0.99964 3.58 0.99983 3.78 0.99992 3.98 0.99997 
3.19 0.99929 3.39 0.99965 3.59 0.99983 3.79 0.99992 3.99 0.99997 

          
3.20 0.99931 3.40 0.99966 3.60 0.99984 3.80 0.99993 4.00 0.99997 
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For calculations of specific entries in this table see e.g.: 
 

3.20 0.99931 3.40 0.99966 3.60 0.99984 3.80 0.99993 4.00 0.99997 

 
 

(b) Standard (i.e. unit) normal distribution: Quantile points 
[ERMFormulaBookAppendixNormalQuantiles] 
 
 
The table below gives (percentage) quantile points 𝑥 for the unit normal distribution defined by the 
equation: 
 

𝑞 =
1

√2𝜋
∫exp (−

1

2
𝑡2)𝑑𝑡

𝑥

∞

       𝑖. 𝑒.   𝑥 = 𝑁−1(𝑞) 

 
𝒒 𝑥 𝒒 𝑥 𝒒 𝑥 𝒒 𝑥 𝒒 𝑥 

50% 0.0000 5.0% -1.6449 2.0% -2.0537 1.0% -2.3263 0.10% -3.0902 
45% -0.1257 4.5% -1.6954 1.9% -2.0749 0.9% -2.3656 0.09% -3.1214 
40% -0.2533 4.0% -1.7507 1.8% -2.0969 0.8% -2.4089 0.08% -3.1559 
35% -0.3853 3.5% -1.8119 1.7% -2.1201 0.7% -2.4573 0.07% -3.1947 
30% -0.5244 3.0% -1.8808 1.6% -2.1444 0.6% -2.5121 0.06% -3.2389 

          
25% -0.6745 2.5% -1.9600 1.5% -2.1701 0.5% -2.5758 0.05% -3.2905 
20% -0.8416 2.4% -1.9774 1.4% -2.1973 0.4% -2.6521 0.01% -3.7190 
15% -1.0364 2.3% -1.9954 1.3% -2.2262 0.3% -2.7478 0.005% -3.8906 
10% -1.2816 2.2% -2.0141 1.2% -2.2571 0.2% -2.8782 0.001% -4.2649 
5% -1.6449 2.1% -2.0335 1.1% -2.2904 0.1% -3.0902 0.0005% -4.4172 

 
For calculations of specific values of this table see e.g.: 
 

5% -1.6449 2.1% -2.0335 1.1% -2.2904 0.1% -3.0902 0.0005% -4.4172 
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