An analytical/semi-analytical analysis of the characteristics of the Expected Worst Loss in T realisations for Normal random variables

[Nematrian website page: ExpectedWorstLossAnalysis, © Nematrian 2015]

Suppose we have X_i which are independent identically distributed Normal random variables, i.e. $X_i \sim N(\mu, \sigma^2)$. The worst loss in T realisations is $X_{(1)} = min(X_1, ..., X_T)$.

What, in such circumstances is the expected worst loss (in T realisations)?

Without much loss of generality, we can focus on $Y_i = (X_i - \mu)/\sigma$, i.e. unit Normal random variables, as $Y_{(1)} = (X_{(1)} - \mu)/\sigma$.

If $Y_{(1)} > u$ then all of the Y_i must also satisfy $Y_i > u$. As the Y_i are independent and identically distribution, this means that:

$$Pr(Y_{(1)} < u) = 1 - Pr(Y_{(1)} > u) = 1 - Pr(Y_i > u)^T = 1 - (1 - Pr(Y_i < u))^T$$
$$= 1 - \left(1 - \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt\right)^T = 1 - (1 - N(u))^T$$

where N(z) is the cumulative distribution function of the unit Normal distribution.

So the probability density function of $Y_{(1)}$ is p(u) where:

$$p(u) = \frac{d}{du} Pr(Y_{(1)} < u) = \frac{T(1 - N(u))^{T-1}}{\sqrt{2\pi}} e^{-u^2/2}$$

The *expected* value of $Y_{(1)}$, i.e. the expected worst loss in T realisations for a unit Normal distribution, is then $EWL(T) = E(Y_{(1)})$, i.e.:

$$EWL(T) = \int_{-\infty}^{\infty} u \cdot p(u) du = \int_{-\infty}^{\infty} u \frac{T \left(1 - \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} e^{-t^{2}/2} dt\right)^{T-1}}{\sqrt{2\pi}} e^{-u^{2}/2} du$$

Using a symbolic algebra engine we find that there are analytical formulae EWL(T) for T = 1, 2 or 3 but not thereafter:

Т	EWL(T)
1	0
2	1
	$-\frac{1}{\sqrt{\pi}}$
3	$3\sqrt{2}$
	$-\frac{1}{4\pi}$

As T increases EWL(T) becomes more negative, but only relatively slowly:

Т	EWL(T)	EWL(T)
		-EWL(T/2)

1	0	
2	-0.5641895835	-0.5641895835
4	-1.029375373	-0.4651857895
8	-1.423600306	-0.394224933
16	-1.765991393	-0.342391087
32	-2.069668828	-0.303677435
64	-2.343733465	-0.274064637
128	-2.594597369	-0.250863904
256	-2.826863279	-0.232265910

We may check that the values shown above are reasonable using a simulation approach, e.g. using VBA code in Microsoft Excel as per <u>VBA code that can be used to check this analysis</u>.

The worst loss can also be thought of as a specific quantile of a sample of Normal random variables. It might be viewed as the 1/(2T)'th quantile (i.e. half way between 0 and 1/T, given that the sample has T observations). We might therefore expect its expected value to be similar to the corresponding quantile point of the Normal distribution. However, the Normal probability density function is not normally approximately flat at the relevant quantile point (and is instead upward sloping), so the Expected Worst Loss in T realisations is normally somewhat above the 1/(2T)'th Normal quantile point:

Т	EWL(T)	c.f. $N^{-1}\left(\frac{1}{2T}\right)$
1	0	0
2	-0.5641895835	-0.67449
4	-1.029375373	-1.15035
8	-1.423600306	-1.53412
16	-1.765991393	-1.86273
32	-2.069668828	-2.15387
64	-2.343733465	-2.41756
128	-2.594597369	-2.66007
256	-2.826863279	-2.88563