Kendal's tau

[Nematrian website page: KendalTau, © Nematrian 2015]

Kendal's tau is a measure of rank correlation and measures the similarity of orderings of data when ranked by each of the quantities.

If $(x_1, y_1), ..., (x_n, y_n)$ are a set of joint observations from two random variables X and Y then pairs (x_i, y_i) and (x_j, y_j) $i \neq j$ are said to be 'concordant' if both $x_i > x_j$ and $y_i > y_j$ (or if both $x_i < x_j$ and $y_i < y_j$). They are said to be 'discordant' if $x_i > x_j$ and $y_i < y_j$ or if $x_i < x_j$ and $y_i > y_j$ (and neither concordant or discordant if if $x_i = x_j$ or $y_i = y_j$, which will not happen if all the $\{x_i\}$ and all the $\{y_i\}$ are unique).

Kendall's τ coefficient is then:

$$\tau = \frac{(number of \ concordant \ pairs) - (number \ of \ discordant \ pairs)}{\frac{1}{2}n(n-1)}$$

As there are $\frac{1}{2}n(n-1)$ pairs in total, the coefficient is in the range $-1 \le \tau \le 1$.

[N.B. There are various different ways of handling ties]

It is a non-parametric statistic and focuses just on ordering, i.e. on behaviour of the copula, and not the individual marginal distributions. This accords with how <u>copulas</u> are specified. For certain copula families, the parameter that selects between different members of the family has a one-to-one relationship with Kendal's tau (e.g. the <u>Clayton copula</u>). A natural way of empirically selecting between members of such a family is thus to calculate the empirical Kendal tau (i.e. the one derived from the observations) and then to identify the choice of parameter that reproduces this value.

See <u>MnKendalTauCoefficient</u> or <u>MnKendalTauCoefficients</u> for Nematrian web functions that can be used to calculate Kendal's tau for a single pair of series or for multiple pairs simultaneously.