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The probability density (likelihood) of a single variable drawn from a Normal distribution 𝑁(𝜇, 𝜎2) is: 
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Thus the likelihood of 𝑛 independent draws 𝑥1, … , 𝑥𝑛 from this distribution is: 
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To identify the values of 𝜇 and 𝜎 that maximise 𝐿 it is easiest to identify the maximum of the log 
likelihood (as the two will be maximised for the same values of 𝜇 and 𝜎 since log 𝑥 is a monotonically 
increasing function of 𝑥). The log likelihood is: 
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This is maximised when 
𝜕 log 𝐿

𝜕𝜇
= 0 and 
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= 0, i.e. when: 
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The maximum likelihood estimator, �̂�𝑀𝐿, of the mean 𝜇 is thus the average of the observations, �̅�. It 
is possible to show that this is also the minimum variance unbiased estimator of 𝜇. The maximum 
likelihood estimator, �̂�𝑀𝐿, of 𝜎 is the population standard deviation, 𝑠𝑝 of the 𝑥𝑖 which can be 

determined using the MnPopulationStdev web function. Please note that whilst �̂�𝑀𝐿 is an unbiased 
estimator of 𝜇, �̂�𝑀𝐿 is a biased estimator of 𝜎. The minimum variance unbiased estimator of 𝜎2 is the 
sample variance (i.e. square of the sample standard deviation). The sample standard deviation is: 
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